

Analyse des catégories clés

Nalin SRIVASTAVA

<u>IPCC TFI TSU</u>

ATELIERS REGIONAUX AFRICAINS SUR LES REDD+, LES SYSTEMES NATIONAUX DE SURVEILLANCE DES FORETS ET LES SYSTEMES NATIONAUX D'INVENTAIRE DES GAZ A EFFET DE SERRE

25-27 Février 2014, Zambie

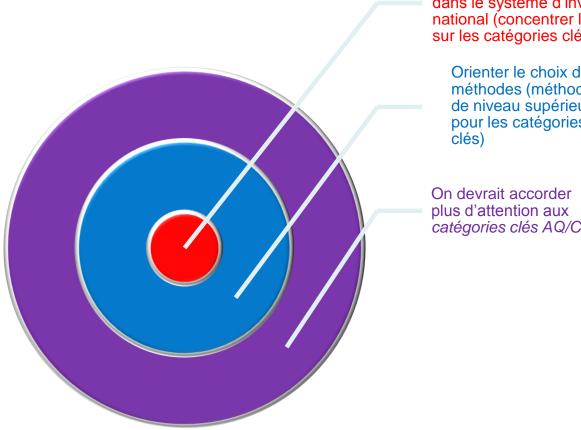
Pourquoi l'ACC?

Des méthodes plus rigoureuses (de niveau supérieur) réduisent les incertitudes de l'inventaire mais coûtent plus!!

Mais les ressources sont limitées et il n'est pas possible d'utiliser les méthodes les plus rigoureuses pour tous les types d'inventaires...

Il faut concentrer les efforts sur les méthodes d'inventaire qui ont un impact maximal sur les incertitudes liés à l'inventaire total en vue d'une meilleure utilisation des ressources disponibles

L'analyse par catégories clé permet d'identifier les catégories qui contribuent plus aux incentifiedes liés à l'inventaire total (catégories clés) de manière systématique et els jective !!!



Catégories clés

- Ce sont des catégories d'émissions ou d'absorption qui contribuent le plus au total ou à la tendance des émissions et absorptions de l'inventaire national total des GES.
- "Une catégorie clé est celle qui est priorisée au sein du système national d'inventaire car son estimation influe de manière significative sur l'inventaire total d'un pays des gaz à effet de serre en termes de niveau absolu, de tendance, ou d'incertitudes des émissions et des absorptions. A chaque fois que le terme catégorie clé est utilisé, il comprend à la fois des catégories de sources et de puits."
- C'est une bonne pratique d'utiliser les méthodes de niveau supérieur (au moins de niveau 2) pour les catégories clés.

A quelle fin est utilisée l'analyse des catégories clés?

Identification des catégories clés pour la priorisation des ressources dans le système d'inventaire national (concentrer les ressources sur les catégories clés)

Orienter le choix des méthodes (méthodes de niveau supérieur pour les catégories

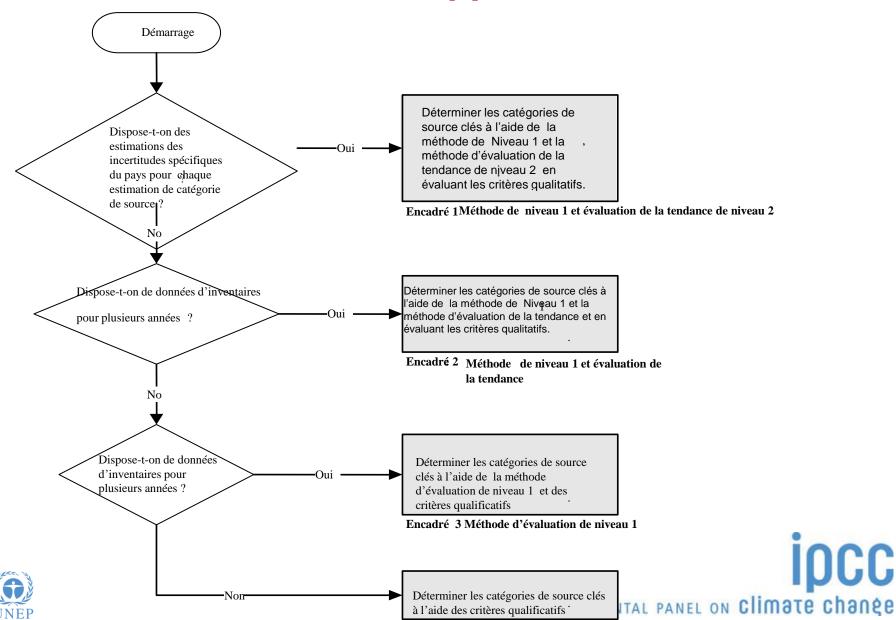
catégories clés AQ/CQ

Types d'analyses d'ACC

- Analyse quantitative des valeurs numériques qui décrivent la contribution d'une catégorie aux émissions nationales totales et aux absorptions et leur tendance (Niveau et évaluation des tendances)
- Analyse qualitative prend en compte d'autres critères dont l'évaluation quantitative n'est pas facile

Etapes

- Elaborer une liste de catégories sur la base des catégories du GIEC
 - 1. Identifier les considérations sociales liées à l'analyse (par exemple la combustion des fuels fossiles est une grande catégorie d'émission qui peut être classée en sous-catégories)
 - 2. Chaque GES émis ou éliminé à partir d'une seule catégorie devrait être pris en compte individuellement
 - 3. Les catégories de sources qui utilisent la même empreinte écologique basée sur des hypothèses arrêtées en commun devraient être agrégées avant l'analyse
- 2. Effectuer une analyse quantitative de la relation entre le niveau et la tendance de chaque catégorie d'émissions et les émissions nationales totales. Utiliser l'équivalent d'émissions de CO₂ calculé suivant le potentiel de réchauffement global (RPG)
- 3. Prendre en compte toutes les considérations qualitatives susceptibles d'ajouter des catégories clés supplémentaires.
- 4. Documenter les résultats et la compilation des inventaires.



Méthodes quantitatives des catégories clés

- Méthode 1. Approche basée sur la contribution au total et à la tendance
 - Simple
 - Utilise des données tirées des estimations des émissions/absorptions
- <u>Méthode 2</u>. basée sur la contribution à l'incertitude générale
 - Plus complexe
 - Il faut une analyse complète de l'incertitude qui a été effectuée
- Les deux méthodes peuvent êtres utilisées ensemble au moment de la définition des priorités.

Comment sélectionner l'approche à utiliser...

Approche 1 – Evaluation du niveau

$$Level = \frac{|category\ estimate|}{total\ contribution}$$

- La "Contribution" est la somme de toutes les émissions et absorptions (exprimées en nombres positifs)
- Mathématiquement:

$$L_{x,t} = |E_{x,t}| / \sum_{y} |E_{y,t}|$$

Approche 1 – Evaluation du niveau(2)

- Le niveau est calculé pour chaque catégorie.
- Le cumul des plus grandes catégories qui peut aller jusqu'à 95% du total est sélectionné.
- Ce sont les catégories clés.

			Emission/ absorption
1A1	Activités de combustion de combustibles – Industries de l'Energie	Charbon	10000
1A1	Activités de combustion de combustibles – Industries de l'énergie	Pétrole	200
1A2	Activités de combustion de combustibles – Industries manufacturières et de construction	Charbon	1300
1A2	Activités de combustion de combustibles – Industries manufacturières et de construction	Gaz	123
1A3a	Activités de combustion de combustibles – Transport – aviation civile	CO ₂	5502
3A2	Gestion du fumier	CH₄	543
3B1a	Terres forestières restant terres forestières	CO ₂	-2345
3B1b	Terres converties en terres forestières	CO ₂	879

			Emission/ Absorption	Absolu
1A1	Activités de combustion de combustibles – Industries de l'énergie	Charbon	10000	10000
1A1	Activités de combustion de combustibles – Industries de l'énergie	Pétrole	200	200
1A2	Activités de combustion de combustibles – Industries manufacturières et de construction	Charbon	1300	1300
1A2	Activités de combustion de combustibles – Industries manufacturières et de construction	Gaz	123	123
1A3a	Activités de combustion de combustibles - Transport – Aviation civile	CO ₂	5502	5502
3A2	Gestion du fumier	CH₄	543	543
3B1a	Terres forestières restant terres forestières	CO ₂	-2345	2345
3B1b	Terres converties en terres forestières	CO ₂	879	879
				20892

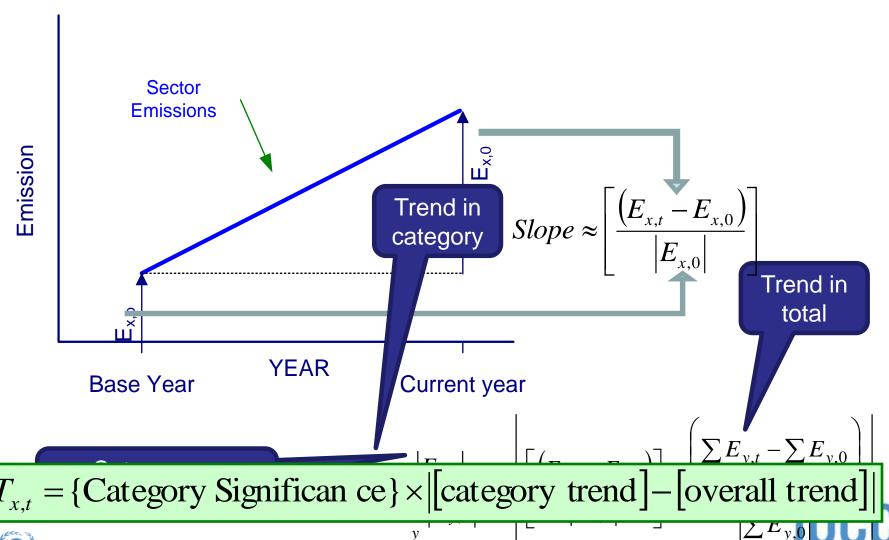
			Emission/ Absorption	Absolu	Niveau
1A1	Activités de combustion de combustibles – Industries de l'Energie	Charbon	10000	10000	47.9%
1A1	Activités de combustion de combustibles – Industries de l'énergie	Pétrole	200	200	1.0%
1A2	Activités de combustion de combustibles – Industries manufacturières et de construction	Charbon	1300	1300	6.2%
1A2	Activités de combustion de combustibles – Industries manufacturières et de construction	Gaz	123	123	0.6%
1A3a	Activités de combustion de combustibles - Transport – Aviation civile	CO ₂	5502	5502	26.3%
3A2	Gestion du fumier	CH ₄	543	543	2.6%
3B1a	Terres forestières restant terres forestières	CO ₂	-2345	2345	11.2%
3B1b	Terres converties en terres forestières	CO ₂	879	879	4.2%
				20892	

			Emission/ Removal	Absolu	Niveau
1A1	Activités de combustion de combustibles – Industries de l'énergie	Charbon	10000	10000	47.9%
1A3a	Activités de combustion de combustibles – - Transport, aviation civile	CO ₂	5502	5502	26.3%
3B1a	Terres forestières restant terres forestières	CO ₂	-2345	2345	11.2%
1A2	Activités de combustion de combustibles- Industries manufacturières et de construction	Charbon	1300	1300	6.2%
3B1b	Terres converties en terres forestières	CO ₂	879	879	4.2%
3A2	Gestion de fumier	CH₄	543	543	2.6%
1A1	Activités de combustion de combustibles - Industries de l'énergie	Pétrole	200	200	1.0%
1A2	Activités de combustion de combustibles- Industries manufacturières et de construction	Gaz	123	123	0.6%
				20892	

			Emission/ Absorptionl	Δηςομι	Niveau	Cumulat
1A1	Activités de combustion de combustibles – Industries de l'énergie	Charbon	10000	10000	47.9%	47.9%
1A3a	Activités de combustion de combustibles – - Transport - aviation Civile	CO ₂	5502	5502	26.3%	74.2%
3B1a	Terres forestières restant terres forestières	CO ₂	-2345	2345	11.2%	85.4%
1A2	Activités de combustion de combustibles- Industries manufacturières et de construction	Charbon	1300	1300	6.2%	91.6%
3B1b	Terres converties en terres forestières	CO ₂	879	879	4.2%	95.9%
3A2	Gestion du fumier	CH ₄	543	543	2.6%	98.5%
1A1	Activités de combustion de combustibles – Industries de l'énergie	Oil	200	200	1.0%	99.4%
1A2	Activités de combustion de combustibles- Industries manufacturières et de construction	Gaz	123	123	0.6%	100.09
				20892		

Méthode 1 – Evaluation de tendance

$$T_{x,t} = \frac{\left|E_{x,0}\right|}{\sum\limits_{y}\left|E_{y,0}\right|} \bullet \left[\frac{\left(E_{x,t} - E_{x,0}\right)}{\left|E_{x,0}\right|}\right] - \frac{\left(\sum\limits_{y} E_{y,t} - \sum\limits_{y} E_{y,0}\right)}{\left|\sum\limits_{y} E_{y,0}\right|}$$


Si zéro pour l'année deréférence:
$$T_{x,t} = \left| E_{x,t} / \sum_{y} \right| E_{y}$$

 Semble complexe mais le calcul à l'aide d'un tableur est facile (Voir les directives)

Méthode 1 – Evaluation de tendance

Exemple d'évaluation de la tendance

Table 4.6 Exemple de la méthode 1 : Évaluation de la tendance de l'inventaire des émissions de GES finlandais pour 2003 (avec les catégories clés en caractère gras)

	i e	1	<u></u>		i		
A	В	C	D	E	F	G	H
Code de la catégorie	Catégories sources du GIEC	Gaz à effet de serre	$\mathbf{E}_{\mathbf{x},0}$	$\mathrm{E}_{\mathrm{x,t}}$	Evaluation de la tendance	% Contribu- tion à la	Total cumulatif d
source du GIEC		Serre	(Gg CO ₂ eq)	(Gg CO ₂ eq)	$T_{x,t}$	tendance	la colonne G
3B1a	Terres forestières restant terres forestières	CO ₂	-23 798	-21 354	0.078	0.147	0.147
1A1	Industries de l'énergie: Solides	CO ₂	9 279	17 311	0.042	0.079	0.227
1A3b	Transport routier	CO ₂	10 800	11 447	0.040	0.076	0.302
1A4	Autres secteurs: liquide	CO ₂	6 714	5 651	0.040	0.075	0.378
1A2	Industries manufacturières et de construction: solide	CO ₂	6 410	5 416	0.038	0.072	0.450
3B3a	Prairies restant prairies	CO ₂	-1 071	2 974	0.037	0.069	0.519
1A1	Industries de l'énergie :T	CO ₂	3 972	9 047	0.035	0.066	0.585
1A1	Industries de l'énergie : Gaz	CO ₂	2 659	6 580	0.029	0.054	0.639
4A	Elimination des déchets solides	CH ₄	3 678	2 497	0.028	0.053	0.692
3C4	Emissions directes de N ₂ O des sols gérés	N ₂ O	3 513	2 619	0.024	0.046	0.738
1A2	Industries manufacturières et de construction: Liquides	CO ₂	4 861	4 736	0.022	0.042	0.780 Te Chan

Méthode 2: Evaluation de niveau

$$LU_{x,t} = \left(L_{x,t} \bullet U_{x,t}\right) / \sum \left[\left(L_{y,t} \bullet U_{y,t}\right)\right]$$

- L est l'évaluation du niveau et U l'incertitude pour la source x pour l'année t
- Une méthode similaire à la méthode 1 sélectionner celles dont le cumul contribue jusqu'à hauteur de 90% et non jusqu'à 95%

Méthode 2: Evaluation de la tendance

$$LU_{x,t} = \left(T_{x,t} \bullet U_{x,t}\right)$$

- Test l'évaluation de la tendance et U l'incertitude pour la source x pour l'année t
- Une méthode similaire à méthode 1 mais sélectionner celles dont le cumul contribue jusqu'à hauteur 90% et non 95%

Quelques critères qualitatifs

- Techniques et technologies d'atténuation
- Croissance attendue
- Aucune évaluation quantitative de l'incertitude effectuée (Par exemple, incertitude élevée et grands stocks)
- Exhaustivité (Un inventaire incomplet donne de faux résultats pour la détermination des catégories clés); Cf.Vol.1 Chapitre 2 pour les méthodes de collecte de données.

Exemple de rapport

	Récapitulatif de l'analyse des catég	gories clés pour				
IPCC Categor y Code	Catégories de source du GIEC	Gaz à effe de serre		Observations		
1A	Activités de combustion de combustiles : Liquide	CO		Aggrégés		
1A	Activités de combustion de combustiles : Solides	g		Aggrégés		
1A	Activi L = catégorie clé en fonction du	niveau d'é	valuation	; L1, L2		
1A1	Indus T = catégorie clé en fonction de					
1A1	Indus T1, T2					
1A1	Indus Q = catégorie clé selon en fonc	tion des cri	tères qua	alitatifs		
1A1	Industries de l'Energie: Liquides	CO ₂	L1, T1			
1A2	Industries manufacturières et de construction: Solides	CO ₂	L1, T1			
1A2	Industries manufacturières et de construction: Liquides	CO ₂	L1, T1			
1A2	Industries manufacturières et de construction: Gaz	CO ₂	L1, T1			
1A2	Industries manufacturières et de construction: Tourbe	CO ₂	L1, T1			
1A3b	Transport routier	CO ₂	L1, T1			
A3b	Transport routier : Voitures équipées de conertisseurs catlytique	N ₂ O	L2, T2	Aggregés	Ihcc	
UNER3c	Rails	INTERGOVERI	IMENTAL PAN	Tedance sub	ective	

Récapitulatif

- L'ACC identifie les catégories de sources et de puits qui influent le plus sur le total des émissions/absorptions et/ou de la tendance.
- Les améliorations apportées à ces catégories vont optimiser l'inventaire.
- Les compilateurs devraient concentrer les ressources sur les catégories clés.
- C'est une bonne pratique d'utiliser au moins une méthode de niveau 2 pour les catégories clés.
- Il existe deux méthodes les compilateurs devraient utiliser celle qui correspond le mieux à leurs besoins.

Merci! Avez-vous des questions?

