

2006 IPCC Guidelines for National Greenhouse Gas Inventories: Waste Sector

Regional African Workshops on REDD+ National Forest Monitoring Systems and Greenhouse

Gas National Inventory Systems

25-27 February 2014

Livingstone, Zambia

Baasansuren Jamsranjav Technical Support Unit, IPCC TFI

Waste Sector

- Volume 5 (Waste) gives methodological guidance for estimation of CO₂,
 CH₄ and N₂O emissions from following categories:
 - Solid waste disposal (4A)
 - Biological treatment of solid waste (4B)
 - Incineration and open burning of waste (4C)
 - Wastewater treatment and discharge (4D)
- Typically, CH₄ emissions from solid waste disposal sites (SWDS) are the largest source in the Waste sector
- Biogenic CO₂ emissions are not included in the Waste sector
- All greenhouse gas (GHG) emissions from waste-to-energy should be estimated and reported under the Energy sector

Major Developments in the 2006 IPCC Guidelines

- Improved accuracy
 - Updated methods and improved default values
 - The previous Tier 1 method is replaced by a first order decay (FOD) method including a simple spreadsheet model (IPCC Waste Model)
 http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.html
- More complete:
 - Guidance is given on more sources
 - Biological treatment of solid waste
 - Open burning of waste
 - Inclusion of methods to estimate N₂O emissions
 - Discharge of wastewater into waterways
 - Advanced wastewater treatment plants

Solid Waste Disposal on Land

- CH₄ is generated as a result of degradation of organic material under anaerobic conditions
- Methodology for estimating CH₄ emissions from SWDS is based on the FOD method
 - Degradable organic component in waste at landfills decays slowly throughout a few decades during which significant amount of CH₄ and CO₂ are formed (some N₂O, NMVOCs, NO_x and CO)
 - Amount of product is proportional to the amount of reactive material in waste (mass of degradable organic carbon (DOC) decomposable under anaerobic conditions)
 - A simple spreadsheet model to assist countries in using the FOD method
- FOD method requires data for historical disposals of waste
 - The 2006 Guidelines provide guidance on how to estimate historical waste disposal data

Solid Waste Disposal on Land

CH₄ emissions in year T from SWDS (Gg)

$$CH_4Emissions = \left[\sum_{x} CH_4generated_{x,T} - R_T\right] * (1 - OX_T)$$

T: inventory year

X: waste category or type/material

 R_T : recovered CH_4 in year T, Gg

 OX_T : oxidation factor in year T, fraction

- CH₄ generated is calculated on the basis of Decomposable Degradable Organic Carbon (DDOCm)
 - DDOCm is part of the organic carbon that will degrade under the anaerobic conditions in SWDS which is a key input to FOD method

Biological Treatment of Solid Waste

- Composting and anaerobic digestion of organic waste (food waste, garden and park waste etc.) produce GHGs
- Chapter 4 provides guidance for estimation of CH₄ and N₂O emissions from composting and anaerobic digestion of organic waste
 - Collect data on the amount and type of solid waste which is treated biologically. The default data should be used only when country-specific data are not available
 - Estimate the CH₄ and N₂O emissions from biological treatment of solid waste. Use default or country-specific emission factors in accordance with the guidance provided
 - Subtract the amount of recovered gas from the amount of CH₄ generated to estimate net annual CH₄ emissions, when CH₄ emissions from anaerobic digestion are recovered.

Biological Treatment of Solid waste: CH₄ Emissions

• Default method for estimation of CH₄ emissions:

$$CH_4Emissions = \sum_{i} (M_i \bullet EF_i) \bullet 10^{-3} - R$$

CH₄ Emissions: total CH₄ emissions in inventory year, Gg CH₄

 M_i : mass of organic waste treated by biological treatment type i, Gg

EF_i: emission factor for treatment *i*, g CH₄/kg waste treated

i : composting or anaerobic digestion

R: total amount of CH₄ recovered in inventory year, Gg CH₄. If the recovered gas is flared,

the emissions should be reported in Waste Sector

Biological Treatment of Solid Waste: N₂O Emissions

• Default method for estimation of N₂O emissions:

$$N_2OEmissions = \sum_i (M_i \bullet EF_i) \bullet 10^{-3}$$

N₂O Emissions: total N₂O emissions in inventory year, Gg N₂O

 M_i : mass of organic waste treated by biological treatment type i, Gg

EF_i: emission factor for treatment *i*, g N₂O/kg waste treated

i : composting or anaerobic digestion

Incineration and Open Burning of Waste

- Guidance for estimation of GHG emissions (CO₂, CH₄ and N₂O) in Chapter 5
 - Where possible, default values for AD, EFs and other parameters are provided
- Amount of fossil carbon is the most important factor determining the CO₂
 emissions as only CO₂ emissions of fossil origin (e.g., plastics, certain textiles,
 rubber, liquid solvents, and waste oil) should be included in emission estimates
- CH₄ emissions result from incomplete combustion of waste and can be affected by temperature, residence time, and air to waste ratio
- N₂O emissions are mainly determined by technology, combustion temperature (emitted at relatively low combustion temperatures 500-950°C) and waste composition
- GHG emissions from incineration with energy recovery are reported in the Energy Sector

Incineration and Open Burning of Waste: CO₂ Emissions

Based on the total amount of waste combusted:

$$CO_2Emissions = \sum_{i} (SW_i \bullet dm_i \bullet CF_i \bullet FCF_i \bullet OF_i) \bullet 44/12$$

CO₂ Emissions: CO₂ emissions in inventory year, Gg/yr

SW_i: total amount of solid waste of type *i* (wet weight) incinerated or open-burned, Gg/yr

dm; : dry matter content in the waste (wet weight) incinerated or open-burned, (fraction)

CF_i: fraction of carbon in the dry matter (total carbon content), (fraction)

FCF_i: fraction of fossil carbon in the total carbon, (fraction)

OF_i: oxidation factor, (fraction)

44/12: conversion factor from C to CO₂

i: type of waste incinerated/open-burned such as MSW, industrial solid waste (ISW), sewage sludge, hazardous waste, clinical waste, etc.

Incineration and Open Burning of Waste: CO₂ Emissions

• For municipal solid waste:

$$CO_2Emissions = MSW \bullet \sum_j (WF_j \bullet dm_j \bullet CF_j \bullet FCF_j \bullet OF_j) \bullet 44/12$$

CO₂ Emissions: CO₂ emissions in inventory year, Gg/yr

MSW: total amount of municipal solid waste as wet weight incinerated or open-burned, Gg/yr

WF_i: fraction of waste type/material of component j in the MSW (as wet weight incinerated or openburned)

dm_i: dry matter content in the component j of the MSW incinerated or open-burned, (fraction)

CF_i: fraction of carbon in the dry matter (i.e., carbon content) of component **j**

FCF_i: fraction of fossil carbon in the total carbon of component j

OF_i: oxidation factor, (fraction)

44/12: conversion factor from C to CO₂

j: component of the MSW incinerated/open-burned such as paper/cardboard, textiles, food waste, wood, garden (yard) and park waste, disposable nappies, rubber and leather, plastics, metal, glass, other inert waste

Incineration and Open Burning of Waste: CH₄ Emissions

$$CH_4Emissions = \sum_{i} (IW_i \bullet EF_i) \bullet 10^{-6}$$

CH₄ Emissions: CH₄ emissions in inventory year, Gg/yr

IW_i: amount of solid waste of type *i* incinerated or open-burned, Gg/yr

EF_i: aggregate CH₄ emission factor, kg CH₄/Gg of waste

10⁻⁶: conversion factor from kilogram to gigagram

i: category or type of waste incinerated/open-burned (MSW, ISW, hazardous waste, clinical waste, sewage sludge, etc.)

• The amount and composition of waste should be consistent with the activity data used for estimating CO₂ and N₂O emissions from incineration/open burning

Incineration and Open Burning of Waste: N₂O Emissions

$$N_2OEmissions = \sum_{i} (IW_i \bullet EF_i) \bullet 10^{-6}$$

N₂O Emissions: N₂O emissions in inventory year, Gg/yr

IW_i: amount of incinerated/open-burned waste of type *i* , *Gg/yr*

EF_i: N₂O emission factor (kg N₂O/Gg of waste) for waste of type *i*

10-6: conversion from kilogram to gigagram

i: category or type of waste incinerated/open-burned (MSW, ISW, hazardous waste, clinical waste, sewage sludge, etc.)

Amount of Waste Open-burned

• Statistics may not be available. Where the data on waste amount are not available, total amount of MSW open-burned can be estimated

$$MSW_B = P \bullet P_{frac} \bullet MSW_P \bullet B_{frac} \bullet 365 \bullet 10^{-6}$$

MSW_B: Total amount of municipal solid waste open-burned, Gg/yr

P: population (capita)

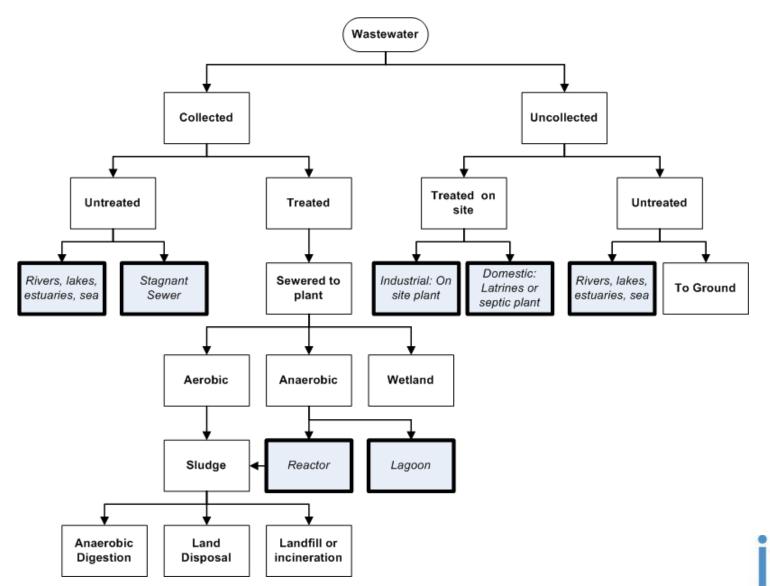
P_{frac}: fraction of population burning waste, (fraction)

MSW_P: per capita waste generation, kg waste/capita/day

B_{frac}: fraction of the waste amount that is burned relative to the total amount of waste treated

365: number of days by year

10⁻⁶: conversion factor from kilogram to gigagram


Wastewater Treatment and Discharge

- Wastewater (domestic, commercial and industrial) may be treated on site (uncollected), sewered to a centralized plant (collected) or disposed untreated
- Treatment and disposal of wastewater produce GHGs such as CO₂, CH₄ and N₂O
 - CO₂ is of biogenic origin and not considered in the emission estimates
- CH₄ production depends primarily on the amount of degradable organic material in the wastewater, the temperature and the type of treatment system
- CH₄ generated can be recovered and combusted in a flare or energy device
 - The flared or recovered for energy use should be subtracted from total emissions
 - Where CH₄ is recovered for energy use, then the resulting GHG emissions should be reported under Energy Sector
- The N₂O emissions are associated with the degradation of nitrogen components in the wastewater (e.g., urea, nitrate and protein)
 - The N₂O emissions can occur as direct emissions from treatment plants or from indirect emissions from wastewater after disposal of effluent into waterways, lakes or the sea

Wastewater Treatment Systems and Discharge Pathways

Domestic Wastewater Treatment: CH₄ Emissions

Total CH₄ emissions from domestic wastewater:

$$CH_4Emissions = \left[\sum_{i,j} \left(U_i \bullet T_{i,j} \bullet EF_j\right)\right] (TOW - S) - R$$

CH₄ Emissions: CH₄ emissions in inventory year, kg CH₄/yr

TOW: total organics in wastewater in inventory year, kg BOD/yr

S: organic component removed as sludge in inventory year, kg BOD/yr

U_i: fraction of population in income group i in inventory year

T_{i,j}: degree of utilisation of treatment/discharge pathway or system, j, for each income group fraction i in inventory year

i: income group: rural, urban high income and urban low income

j: each treatment/discharge pathway or system

EF_i: emission factor, kg CH₄/kg BOD

R: amount of CH₄ recovered in inventory year, kg CH₄/yr

Domestic Wastewater Treatment: CH₄ Emissions

 Activity data is the total amount of organically degradable material in the wastewater (TOW).

$$TOW = P \bullet BOD \bullet 0.001 \bullet I \bullet 365$$

TOW: total organics in wastewater in inventory year, kg BOD/yr

P: country population in inventory year, (person)

BOD: country-specific per capita BOD in inventory year, g/person/day

0.001: conversion from grams BOD to kg BOD

I: correction factor for additional industrial BOD discharged into sewers (for collected the default is 1.25, for uncollected the default is 1.00)

Domestic Wastewater: CH₄ Emissions

 Emission factor for each domestic wastewater treatment/discharge pathway or system

$$EF_j = B_0 \bullet MCF_j$$

EF_i: emission factor, kg CH₄ / kg BOD

j: each treatment/discharge pathway or system

B_o: maximum CH₄ producing capacity, kg CH₄/kg BOD.

MCF_j: CH₄ correction factor (fraction) and indicates the degree to which the system is anaerobic

Industrial Wastewater: CH₄ Emissions

- Industrial wastewater may be treated on-site or released into domestic sewer systems
- The CH₄ emissions from industrial wastewater treatment (on-site):

$$CH_4Emissions = \sum_{i} [(TOW_i - S_i) \bullet EF_i - R_i]$$

CH₄ Emissions: CH₄ emissions in inventory year, kg CH₄/yr

TOW_i: total organically degradable material in wastewater from industry i in inventory year, kg COD/yr

i: industrial sector

Si: organic component removed as sludge in inventory year, kg COD/yr

EF_i: emission factor for industry *i*, *kg CH*₄/*kg COD* for treatment/discharge pathway or systems. If more than one treatment practice is used in an industry this factor would need to be a weighted average.

R_i: amount of CH₄ recovered in inventory year, kg CH₄/yr

Industrial Wastewater: CH₄ **Emissions**

Emission factor for each industrial wastewater

$$EF_j = B_0 \bullet MCF_j$$

EF_i: emission factor, for each treatment/discharge pathway/systems, kg CH₄ / kg COD

j: each treatment/discharge pathway or system

B_o: maximum CH₄ producing capacity, kg CH₄/kg COD

MCF_i: CH₄ correction factor (fraction)

Industrial Wastewater: CH₄ Emissions

 Activity data is the amount of organically degradable material in the wastewater (TOW):

$$TOW_i = P_i \bullet W_i \bullet COD_i$$

TOW_i: total organically degradable material in wastewater for industry *i, kg COD/yr*

i: industrial sector

P_i: total industrial product for industrial sector *i*, *t/yr*

W_i: wastewater generated, m³/t product

COD_i: chemical oxygen demand (industrial degradable organic component in wastewater), kg COD/m³

Domestic Wastewater: N₂O Emissions

Indirect N₂O emissions from wastewater effluent discharged into aquatic environments

$$N_2OEmissions = N_{EFFLUENT} \bullet EF_{EFFLUENT} \bullet 44/28$$

N₂O Emissions: N₂O emissions in inventory year, kg N₂O/yr

N _{EFFLUENT}: nitrogen in the effluent discharged to aquatic environments, kg N/yr

EF_{EFFLUENT}: emission factor for N₂O emissions from discharged to wastewater, kg N₂O-N/kg N

44/28: conversion of kg N_2O-N into kg N_2O .

Domestic Wastewater: N₂O Emissions

Total N in the effluent

$$N_{\textit{EFFLUENT}} = \left(P \bullet \textit{PROTEIN} \bullet F_{\textit{NPR}} \bullet F_{\textit{NON-CON}} \bullet F_{\textit{IND-COM}}\right) - N_{\textit{SLUDGE}}$$

N_{EFFLUENT}: total annual amount of nitrogen in the wastewater effluent, kg N/yr

P: human population

Protein: annual per capita protein consumption, kg/person/yr

 F_{NPR} : fraction of nitrogen in protein (default = 0.16, kg N/kg protein)

F_{NON-CON}: factor for non-consumed protein added to the wastewater

F_{IND-COM}: factor for industrial and commercial co-discharged protein into the sewer system

N_{SLUDGE}: nitrogen removed with sludge (default = zero), kg N/yr

Domestic Wastewater: N₂O Emissions

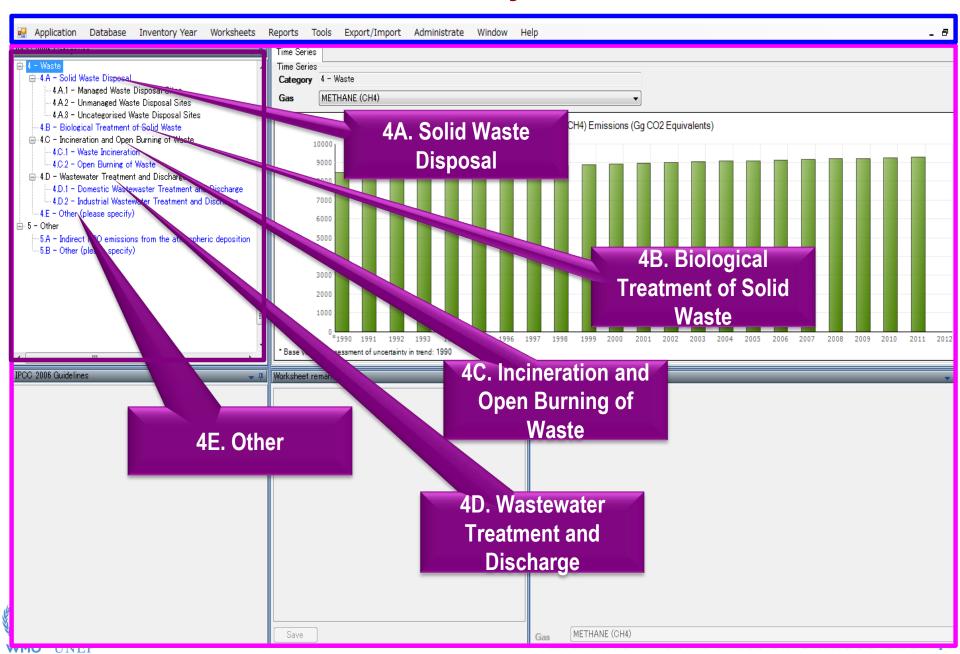
Emissions from advanced centralised wastewater treatment plants

$$N_2 O_{PLANTS} = P \bullet T_{PLANT} \bullet F_{IND-COM} \bullet EF_{PLANT}$$

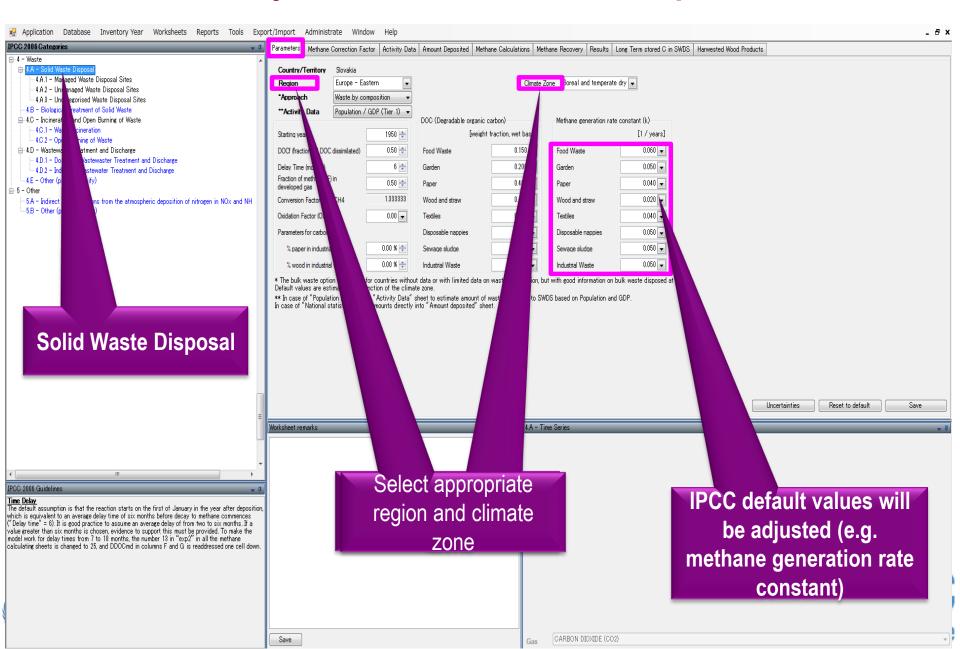
N₂O_{PLANTS}: total N₂O emissions from plants in inventory year, kg N₂O/yr

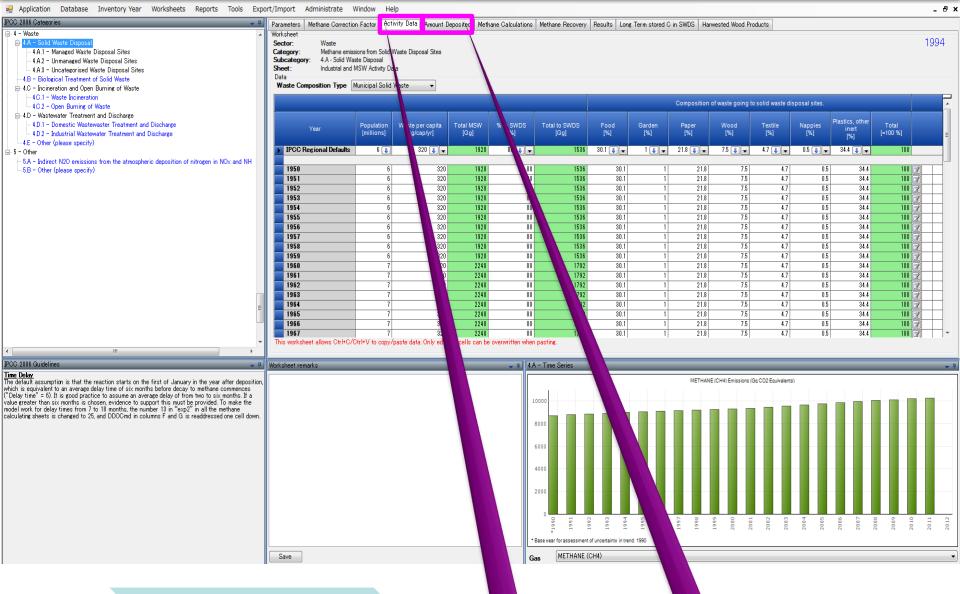
P: human population

T_{PLANT}: degree of utilization of modern, centralized WWT plants, %


 $F_{IND-COMM}$: fraction of industrial and commercial co-discharged protein (default = 1.25)

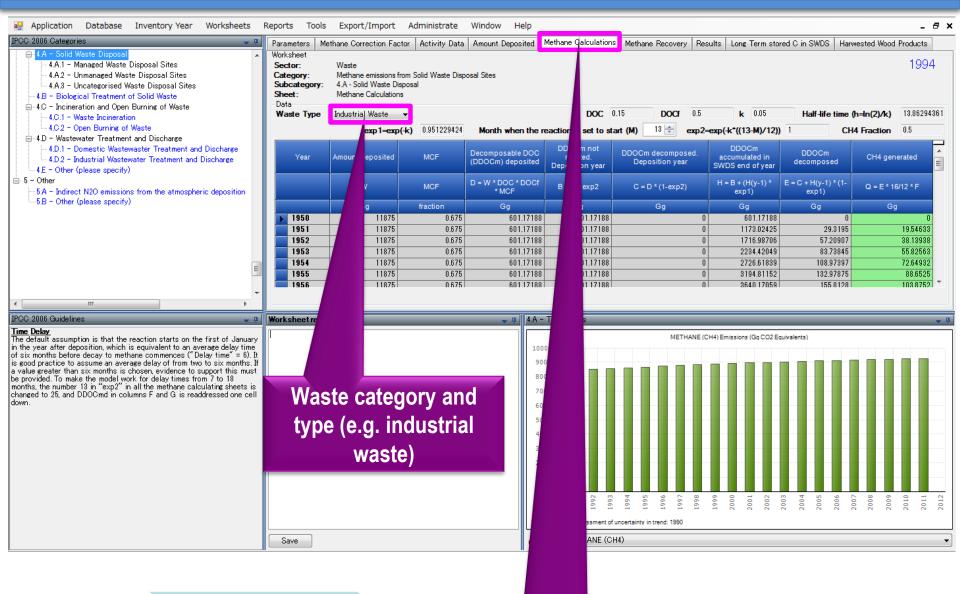
EF_{PLANT}: emission factor, 3.2 g N₂O/person/year





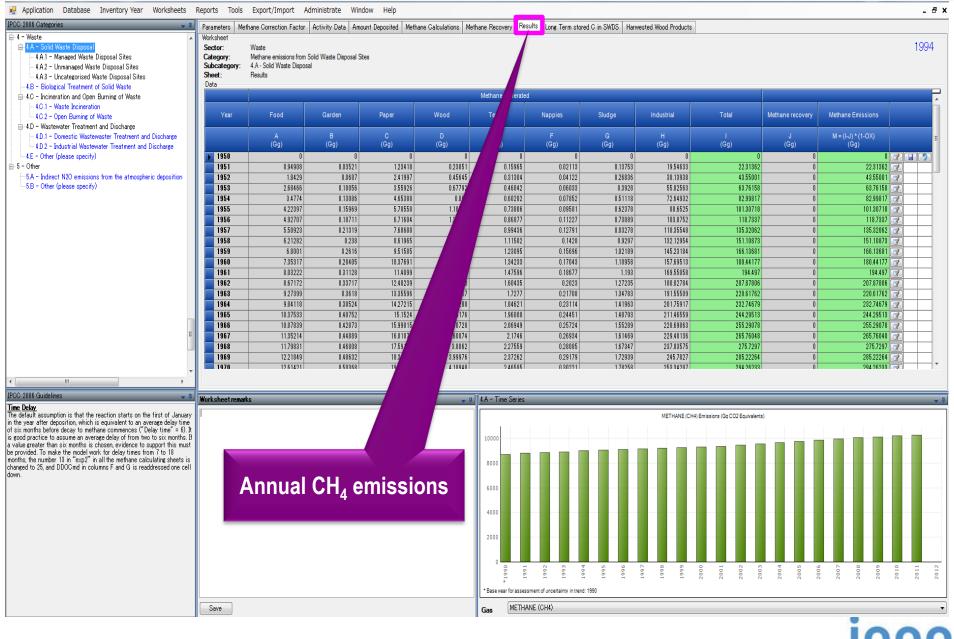
IPCC Inventory Software

IPCC Inventory Software: Solid Waste Disposal on Land

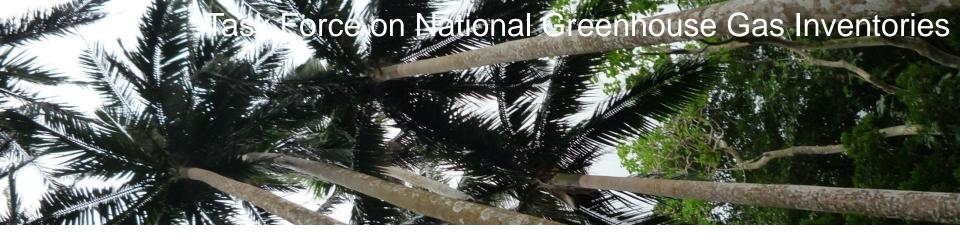


Are historical data on solid waste disposal available?

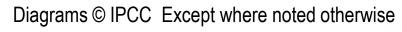
YES



After entering parameters and activity data


Amount of CH₄ generated





Thank you

Guidelines in all UN languages can be downloaded from http://www.ipcc-nggip.iges.or.jp

