

Energy Sector

Regional African Workshops on REDD+ National Forest Monitoring Systems and Greenhouse Gas National Inventory Systems

25-27 February 2014

Livingstone, Zambia

Maya Fukuda

Technical Support Unit, IPCC TFI

INTERGOVERNMENTAL PANEL ON Climate change

- 1. Who has worked on their national Energy GHG emissions?
- 2. What Gases are emitted in the Energy Sector?
- 3. What are the two most important sectors in your national GHG Inventory?
- 4. What fuels are most important in your country?
- 5. What fuels are produced in your country?

Some Questions...

Annual greenhouse gas (GHG) emissions for Annex I

Query results for Party: Annex I - Years: All years - Category: Total GHG emissions including LULUCF/LUCF - Gas: Aggregate GHGs

Source: UNFCCC Data Interface, Thursday, 30 August 2012 09:02:52 CEST

Annual greenhouse gas (GHG) emissions for Annex I

Query results for Party: Annex I - Years: All years - Category: 1 - Energy - Gas: Aggregate GHGs

Source: UNFCCC Data Interface, Thursday, 30 August 2012 09:07:18 CEST

Annual greenhouse gas (GHG) emissions for Annex I

Query results for Party: Annex I - Years: All years - Category: 1.A - Fuel Combustion - Sectoral Approach - Gas: Aggregate GHGs

Source: UNFCCC Data Interface, Thursday, 30 August 2012 09:01:18 CEST

Energy Emissions

Production

- Fugitive emissions from coal mining, oil wells and gas production
- Combustion for energy under stationary combustion

Processing

- Transformation
 Power Stations
 - Refineries
 - Production of Solid Smokeless Fuels
 - Combustion for energy under stationary combustion

Storage

- Leaks form oil tanks and gas storage
- Emissions from Coal Piles

Transport

- Mainly fugitive emissions form pipelines, ships and road transport
- Pipeline compressors under mobile sources
- Combustion for energy under stationary combustion

Use

- Stationary Combustion: industry, commerce, agriculture, fishing etc.
- Mobile Sources: road vehicles, aviation and shipping

IDCC

INTERGOVERNMENTAL PANEL ON Climate change

Annex 1 – Emissions from Energy sector by gas

INTERGOVERNMENTAL PANEL ON Climate change

Combustion Emissions

- CO₂ emissions depend:
 - Almost entirely on the carbon content of the fuel
 - A small amount of carbon is un-oxidised (usually >1%)
- CH₄ and N₂O Emissions depend on
 - Type of fuel
 - Combustion technology
 - Operating conditions
 - Control technology
 - Quality of maintenance
 - Age of equipment

Calculating Emissions of CO₂

- Often simple calculations can be used. For example:
 - CO₂ from combustion comes for the carbon in the fuel
 - In efficient combustion nearly all (>>99%) of the carbon in the coal is converted into CO_2 .

Fuel Combustion Example

- Emissions from fuel use, E (kTonne).
 - Fuel Burnt (GJ) (= Activity data), A
 - Emission Factor, EF
 - Amount of carbon in fuel (Gg/GJ), C
 - Fraction carbon oxidised, U
 - $\frac{44}{12}$ Converts Carbon to CO₂ (= 3.667)

$$EF = \left[C \times U \times \frac{44}{12}\right]$$

 $Emission = EF \times A$

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

A plant burns 1000 tonnes of coal.
 The coal composition is:

	%
Carbon	85
Hydrogen	5.6
Oxygen	7.3
Sulphur	1.0

3. Assuming complete combustion how much CO2 is emitted?

Question

Emission Factor = 0.85 * 1 * 44/12 = 3.117
 Emission = 1,000 * 3.117 = 3,117 tonnes

3. How would this differ if combustion not perfect but 99%...
Emission Factor = 0.85 * .99 * 44/12 = 3.086

Emission = 1,000 * 3.086 = 3,086 tonnes

	%
Carbon	85
Hydrogen	5.6
Oxygen	7.3
Sulphur	1.0

Answer

However

- EFs are often specified in Energy Units.
 - IPCC Guidelines give kg of GHG TJ on a net calorific basis
- If you have mass of fuel and carbon content in terms of mass use this data directly
 - E.g. tonnes of fuel and % Carbon
- If you need to use the EF default data you will need to convert the amount of fuel used to Energy (net CV).

Energy Units

- To convert these data to energy units, eg joules, requires calorific values.
- The IPCC Guidelines use net calorific values (NCVs), expressed in SI units.
- Some statistical offices use gross calorific values (GCV).
 - The difference between NCV and GCV is the latent heat of vaporisation of the water produced during combustion of the fuel.
 - for coal and oil, the NCV is about 5 % less than the GCV
 - For most natural and manufactured gas, the NCV is about 10 % less.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

• Where fuel characteristics (moisture, hydrogen and oxygen contents) are known the 2006 Guidelines give a more precise method to convert GCV to NCV data

IPCC Default Data

	Default CO₂ EF (kg/TJ)	Lower	Upper	NCV (TJ/Gg)
Coke	107,000	95,700	119,000	28.2
Peat	106,000	100,000	108,000	9.76
Lignite	101,000	90,900	115,000	8.9
Anthracite	98,300	94,600	101,000	26.7
Coking Coal	94,600	87,300	101,000	28.2
Other Bituminous Coal	94,600	89,500	99,700	25.8
Residual Fuel Oil	77,400	75,500	78,800	40.4
Gas/Diesel Oil	74,100	72,600	74,800	43.0
Motor Gasoline	69,300	67,500	73,000	44.3
Liquefied Petroleum Gases	63,100	61,600	65,600	47.3
Natural Gas	56,100	54,300	58,300	48.0

INTERGOVERNMENTAL PANEL ON Climate change

Emission Factors (EF)

- This EF approach can be extended to other gases and sources
- Often emissions are proportion to some parameter associated with the process:
 - CO₂ from fuel depends on carbon in fuel
 - CH₄ proportional to amount of fuel burnt (for particular technologies)
 - CH₄ and N₂O from cars is proportional to the distance travelled (for each type and age class of vehicle)

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

Fuels

SOLID (Coal and Coal Products) Inc. coal, coke and derived gases. LIQUID (Crude Oil and Petroleum Products) Fuel Oil, Gasoline, LPG, Ethane and Petroleum Coke ✤ GAS (Natural Gas) ***** OTHER FOSSIL FUELS Non-biomass municipal & Industrial wastes, waste oils PEAT (treated as fossil fuel) ✤ BIOMASS Wood, Charcoal, Biofuels, Biomass fraction of MSW

CO₂ Emissions not included in total Energy Emissions

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Biomass

- CO₂ emissions from biomass combustion are not included in the national total
 - Although they are reported separately
 - Non-CO₂ emissions are reported in the national total
- Net carbon emissions are accounted for in the LULUCF/AFOLU sector
- Peat is treated as a fossil fuel

Basic Method

INTERGOVERNMENTAL PANEL ON Climate change

Coal Use – Africa – IEA data 2006 (Original Units)

Data: IEA 2009 (http://www.iea.org/Textbase/stats/index.asp)

,	Coking Coal	Other Bituminous Coal	Peat	Patent Fuel	Coke Oven gas	Gas Coke	Gas Works Gas	Coke Oven Gas	Blast Furnace Gas
Unit			kT					τJ	
Electricity Plants		124764							
Energy Sector					18				
Industry	14	12,921			841	55	86,586	16,763	32,341
Transport		8							
Residential		4,942	4	104			380		
<i>Commercial and Public Services</i>		2,589					326		
Agriculture / Forestry		265							
Fishing									
Other Non-Specified		397							
Non-Energy Use		2,220							
cv (TJ/Gg)	28.2	25.8	9.76	20.7	28.2	28.2			

Coal Use – Africa – IEA data 2006 (Energy)

1	Coking Coal	Other Bituminous Coal	Peat	Patent Fuel	Coke Oven gas	Gas Coke	Gas Works Gas	Coke Oven Gas	Blast Furnace Gas
Unit			TJ					ΤJ	
Electricity Plants	-	3,218,911	-	-	-	-	-	-	-
Energy Sector	-	-	-	-	508	-	-	-	-
Industry	395	333,362	-	-	23,716	1,551	86,586	16,763	32,341
Transport	-	206	-	-	-	-	-	-	-
Residential	-	127,504	39	2,153	-	-	380	-	_
Commercial and Public Services	-	66,796	-	-	-	-	326	-	_
Agriculture / Forestry	_	6,837	-	-	-	-	-	-	_
Fishing	-	-	_	-	_	_	_	_	_
Other Non-Specified	_	10,243	-	-	-	_	-	_	_
Non-Energy Use	-	57,276	-	-	-	-	-	-	-
Emission Factors kg/T1	94,600	94.600	106.000	97.500	107.000	107.000	44.400	44.400	260.000

Coal Use – Africa – IEA data 2006

	Coking Coal	Other Bituminous Coal	Peat	Patent Fuel	Coke Oven gas	Gas Coke	Gas Works Gas	Coke Oven Gas	Blast Furnace Gas
Unit				Gg	(ktonne)			
Electricity Plants	-	304,509	-	-	-	-	-	-	-
Energy Sector	-	-	-	-	54	. –	-	-	-
Industry	37	31,536	-	-	2,538	166	3,844	744	8,409
Transport	-	20	-	-	-	-	-	-	-
Residential	-	12,062	4	210	-	-	17	-	-
Commercial and Public Services	-	6,319	-	-	-	-	14	_	-
Agriculture / Forestry	_	647	-	-	-	-	-	-	-
Fishing	_	-	-	-	-	_	-	-	-
Other Non-Specified	_	969	-	-	-	-	-	-	-
Non-Energy Use	_	5,4 <u>1</u> 8	-	-	-	_	-	-	-
Total Emissions	37	356,061	4	210	2,592	166	3,876	744	8,409

African CO₂ Emissions -2006

WMO

African CO₂ Emissions -2006

Combustion Emissions – Higher Tiers

- Country Specific emission factors carbon contents are needed
- Need to consider oxidation rates
- Any abatement needs to be taken into account
- May need to stratify fuel use by abatement type and oxidation rate (technology)
- Non-CO₂ emissions technology dependent
- Measurements are a Tier 3 approach can be combined with emission factor tier 1/2 approaches if sufficient data available

Reference Approach

- A simple basic method based on imports, production and exports.
- Essentially:

Emission = *Production* + *Imports* – *Exports* – *NonEnergyUse*

- CO₂ only!
- Used as a check on the sectoral approach described above
 - Differences due to non-energy use of fuel, as well as differing quality data sets

Non-Energy Use of Fuels

	Types of use and examples of fuels used for non-energy applications							
Use	Example of fuel types	Product/process	Ch					
Feedstock	natural gas, oils, coal	ammonia	3.2					
	naphtha, natural gas, ethane, propane, butane, gas oil, fuel oils	methanol, olefins (ethylene, propylene), carbon black	3.9					
Reductant	petroleum coke	carbides	3.6					
	coal, petroleum coke	titanium dioxide	3.7					
	metallurgical cokes, pulverised coal, natural gas	iron and steel (primary)	4.2					
	metallurgical cokes	ferroalloys	4.3					
	petroleum coke, pitch (anodes)	aluminium ¹	4.4					
	metallurgical coke, coal	lead	4.6					
	metallurgical coke, coal	zinc	4.7					
Non-energy	lubricants	lubricating properties	5.2					
Product	paraffin waxes	misc. (e.g., candles, coating)	5.3					
	bitumen (asphalt)	road paving and roofing	5.4					
	white spirit ² , some aromatics	as solvent (paint, dry cleaning)	5.5					
^{1.} Also used in s ^{2.} Also known	secondary steel production (in electric arc furnaces) (see Chapter 4. as mineral turpentine, petroleum spirits, industrial spirit ('S	^{2).} SBP').	C					

INTERGOVERNMENTAL PANEL ON Climate change

African Energy Use – Energy Balance

ktonne oil equivalent (ktoe)

SUPPLY and CONSUMPTION	Coal and Peat	Crude Oil	Petroleum Products	Gas
Production	141,801	495,846	0	169,668
Imports	7,698	42,879	45,214	4,030
Exports	-46,879	-401,357	-43,524	-96,473
International Marine Bunkers**	0	0	-6,035	0
Stock Changes	-39	-336	-1,113	0

African Energy Emissions

SUPPLY and CONSUMPTION	Coal and Peat	Crude Oil	Petroleum Products	Gas
Production	5,936,924	20,760,080	0	7,103,660
Imports	322,300	1,795,258	1,893,020	168,728
Exports	-1,962,730	-16,804,015	-1,822,263	-4,039,132
International Marine Bunkers**	0	0	-252,673	0
Stock Changes	-1,633	-14,068	-46,599	0

Total Emission = 978,092 Gg

Data: IEA 2009 (http://www.iea.org/Textbase/stats/index.asp)

African CO₂ Emissions – Sectoral and Reference Emission Estimates

Comparison of Reference and Sectoral Approaches – all Annex I

WMC

2000 GPG Decision Tree

- If not a key category can use reference approach
- Only estimation methods considered

2006 IPCC Guidelines Decision Tree

- Use Sectorial approach for all Tiers.
- Reference approach for QA/QC
- Deals with measurements

Road Transport

- CO₂ Emissions from C in fuel used
 - Bio-fuels carbon removed form total and reported separately
 - Carbon is also emitted from urea based catalysts and included here (not strictly combustion?)

Emission = *Activity*
$$\bullet \frac{12}{60} \bullet Purity \bullet \frac{44}{12}$$

- CH₄ and N₂O strongly technology related. At higher tiers need to know technologies in fleet (especially type and proportion of catalysts)
- Caution with "fuel sold" data
 - overlaps with off-road and potentially other sectors (e.g. agriculture)
 - Blended fuels (e.g. with bio-ethanol and lubricants)
 - Smuggling
- All fuel sold in country included even if fuel exported in fuel tanks of vehicles and used elsewhere

INTERGOVERNMENTAL PANEL ON CLIMATE CHANEE

Aviation and Shipping

- Aviation and Shipping
 - Domestic Emissions included in National Total
 - International Emissions Reported separately "Bunker Fuels"
 - Domestic trips are legs of journeys between points in one country
 - International are trips between countries

Fugitive Emissions

INTERGOVERNMENTAL PANEL ON Climate change

Fugitive Emissions

- **Fugitive emissions** are emissions of gases or vapour from equipment due to leaks and other unintended or irregular releases of gases, mostly from activities associated with the production and distribution of fossil fuels
 - Includes leaks form pressurised equipment, evaporation and displacement of vapour, and accidental releases
- Significant CH₄ Emissions from
 - Coal Mines
 - Refinery leaks
 - Gas Distribution pipelines
- Simple Emission Factor methods at Tier 1
- Higher Tiers need more detail on technologies and age of plant/mines etc.

INTERGOVERNMENTAL PANEL ON Climate change

Coal Mines

Emissions from

۲

- iti.
- Mining Emissions, gas liberated by fracturing coal during mining. This may be collected (for safety) and flared or used for energy. Emission can continue after mine closure.
- Post-mining emissions, emissions during processing, handling and distribution
- Low temperature oxidation, coal slowly oxidises to CO₂ when exposed to the air
- Uncontrolled Combustion, oxidation may lead to an active fire in coal storage or exposed coal seams. This can occur naturally.
- Mining emissions differ in underground and surface mines.
- Simple emission factors are provided for Tier 1 but this is very site specific so country-specific data is required for better estimates.

Oil and Gas

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

- Fugitive emissions include all emissions from oil and gas systems EXCEPT those for the use of oil and gas for energy or as a feedstock.
- It covers everything from the oil well to the consumer:
 - Exploration
 - Production
 - Collection
 - Processing and Refining
 - Distribution and Delivery
- Includes equipment leaks, evaporation loses, venting, flaring and accidental releases.

Fugitive Gases Emitted

INTERGOVERNMENTAL PANEL ON Climate change

- CO₂ may be contained in the oil or gas as extracted from the reservoir
- CH₄ can be released directly
 - e.g. leaks of natural gas
- CO₂ may be formed from releases of CH₄
 - e.g. some CH₄ leaking from distribution pipelines is converted to CO₂ before it reaches the atmosphere
- CO_2 , CH_4 and N_2O can also be formed in non-useful energy combustion
 - e.g. flaring
- General Tier 1 EFs (for developing and developed countries) are available,
 - These are based on amounts produced, processed or distributed
- At higher tiers detailed knowledge of the system is needed.
 - Country-specific EFs will need to be developed based on measurements

Sources Considered

- Well Drilling and Testing, Well Servicing, Gas Production
- Gas Processing (Sweet Gas Plants, Sour Gas Plants, Deep-cut Extraction Plants (Straddle Plants))
- Gas Transmission & Storage Transmission (Storage
 - Gas Distribution, Natural Gas Liquids Transport (Condensate, Liquefied Petroleum Gas, Conventional Oil, Heavy Oil/Cold Bitumen)
- Thermal Oil Production (Default, Synthetic Crude from Oil sands and from Oil Shale)
- Oil Transport (Pipelines, Tanker Trucks and Rail Cars, Loading of Offshore Production on Tanker Ships)
- Oil Refining and Upgrading
- Refined Product Distribution (Gasoline, Diesel, Aviation Fuel, Jet ipcc Kerosene)

No CCS

 Emissions depend on carbon in fuel burnt

With CCS

- Emissions equal carbon n fuel burnt minus measure C in CO2 captured
- Additional fuel may be burnt to power capture

Transport

- By pipeline or ship etc.
- Include intermediate storage.
- Leaks may occur

Injection

 Leaks while CO2 is injection into final storage location

Storage

- Monitor any potential leaks
- Measurement, monitoring and modelling before and during storage to ensure no leaks.
- On-going monitoring to detect any leaks

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

CO₂ – Leakage from storage site

Estima	ting, Verifying & Reporting Emissions from CO ₂ Storage Sites	
no		
Site Characterizati	Confirm that geology of storage site has been evaluated and that local and regional hydrogeology and leakage pathways (Table 5.1) have been identified.	
of ge		
ssessment isk of Leaka	Confirm that the potential for leakage has been evaluated through a combination of site characterization and realistic models that predict movement of CO ₂ over time and locations where emissions might occur.	
A IZ		-
Monitoring	Ensure that an adequate monitoring plan is in place. The monitoring plan should identify potential leakage pathways, measure leakage and/or validate update models as appropriate.	
		4
Reporting	Report CO_2 injected and emissions from storage site	ipc
		EL ON Climate chan

ipcc

- 1. Which gases are emitted from the *Energy Sector*?
- 2. What is the major GHG from the energy sector?
- 3. What is the major gas emitted through *fugitive emissions*?
- 4. What is the main parameter required for CO₂ emission estimates?
- 5. How is the CO₂ Emission Factor estimated?
- 6. What are "fugitive emissions"?
- 7. What is an "oxidation factor"
- 8. What is the difference between the Sectoral and Reference Approaches?
- 9. Can the *Reference Approach* be used for all GHGs?
- 10. Can you give fugitive emission sources of CO_2 ?

Review

Summary

- Energy Emissions are usually the most important
 - CO₂ from fuel combustion is major source
 - CH₄ mainly comes from fugitive emissions
- CO₂ emission factor depends on carbon content of fuel.
- Reference approach used for checking

Thank you

