Forest and land use change based on socioeconomic and physical drivers: examples from Africa and West Asia

CESR

Rüdiger Schaldach

Center for Environmental Systems Research University Kassel, Germany

Table of contents

- Socio-economic and physical drivers of land-use change and deforestation
- Modeling of land-use changes

CESR

- Model application in context of scenario analysis
 - Continental scale scenarios for Africa
 - Regional scenarios for the Middle East

CESR Land-use and land-cover change

(Foly et al., 2005)

Drivers of land-use change

UNIKASSEL VERSIT'A'T

Underlying causes

(Geist and Lambin, 2002)

The Land System perspective

CEST

U N I K A S S E L V E R S I T A'T

Based on GLP (2005)

The LandSHIFT model

UNIKASSEL VERSITÄT

CESR Spatial model integration

CESR Land-use activity "Crop cultivation"

UNIKASSEL VERSITÄT

Scenario analysis Africa

Plausible descriptions of how the future may unfold... scenarios until 2050 from the UNEP Global Environmental Outlook 4

Markets First

CESR

Faith in markets and their advances for economy but also for social and environmental improvements.

Population: 800 Mio - 1900 Mio

GDP/cap: 702 \$ - 3300 \$

Food availability: 2460 kcal/day - 3476 kcal/day

Climate: dT = 2.2 K; $CO_2 = 563 \text{ ppmv}$

Sustainability First

Emphasis on environmental and social concerns. Population: 800 Mio - 1400 Mio GDP/cap: 702 \$ - 4300 \$ Food availability: 2460 kcal/day - 4108 kcal/day Climate: dT = 1.7 K; $CO_2 = 478$ ppmv

Quantitative scenarios

Sequence of different simulation models

CESR Expansion of agriculture

Markets First 2050

Sustainability First 2050

UNIKASSEL VERSITÄT

	2000	2050	
[1000 km ²]		Markets First	Sustainability First
Cropland	2121	2855	2967
Grazing	7079	8231	8147

Loss of forest habitat

U N I K A S S E L V E R S I T 'A' T

Markets First 2050

CEST

Sustainability First 2050

New land use on deforested cell	Area of change 2000-2050 (1000 km ²)	
	Market First	Sustainability First
Urban	41,586	32,409
Grazing	232,496	224,727
Cropland	577,039	603,016
(Total deforested area)	851,121	860,152

Scenario analysis Middle East

res

- GLOWA Jordan River Project
- Water scarce region
- Drylands with high degradation risk

SS

- Strong population pressure
- Objective: Water management strategies under climate change

GLOWA Jordan River scenarios

CEST

UNIKASSEL VERSITÄT

From storylines to models

CESR

"Fuzzy membership function"

Objective translation: linguistic statement "medium increase of population" → model input

Alcamo (2008)

Numerical model input

Population and income development up to 2050

CEST

Model input and land-use change

I K A S S E L

SITAT

UN

VER

Production based on scenarios of Millenium Vegetable production: Region (1000 tons) 16000 Ecosystem Assessment + FAO data scaled with 14000 GLOWA JR population scenario 12000 Land cover change (in %) 10000 8000 16% MH 6000 Willingness & Ability 12% PP Share in total study region area (%) Output Hopes ■ SWE 4000 8% WA 2000 4% 0 Grazing livestock: Region (1000 heads) 25000 0% Willingness & Ability Natural cosystems P 2 Modest Hopes -4% 20000 tangel din-tilin rable Jrban Poverty & Peace -8% 15000 -12% 10000 -16% 5000 LandSHIFT.R results based on input from SAS, WADISCAPE, VALUE 0 (Koch, 2010) 2010 2020 2030 2040 2050

CESR Calculated land-use change patterns

R. Schaldach and J. Koch

CEST **Population density** UNIKASSEL VERSITÄT

R. Schaldach and J. Koch

Stocking density

U N I K A S S E L V E R S I T 'A' T

Sensitivity analysis

Climate Change – Impact on area and irrigation

R. Schaldach and J. Koch

CESR

Values only for Jordan and PA

CESR Summary and conclusion

- Deforestation is one aspect of land-use change and must be seen as the result of different drivers.
- Spatially explicit models such as LandSHIFT integrate socio-economic and environmental drivers to simulate land-use changes.
- The two examples illustrate how these models can be applied in context of a scenario analysis.
- Models might help to identify causes of deforestation and land-use change and are valuable tools to visualize effects of scenario assumptions.