Tools for assessing ecosystem co-benefits of REDD+

Emily McKenzie Lead – Policy & Finance Natural Capital Project

UNEP Workshop, 27 April 2010

Outline

- Setting the scene: co-benefits assessment tools
 - Different steps in carbon offset projects
 - What are tools used for? Why are they needed?
- InVEST
 - Introduction and overview
 - Examples: Indonesia and Tanzania
- Other tools
 - ARIES
 - Single service models

- 1. Secure Stakeholder Support
- 2. Assess Original Conditions
- 3. Project and Assess Baseline
- 4. Assess and Develop Capacity
- 5. Assess Legal Status and Property Rights
- 6. Determine Net Climate Impacts
- 7. Determine Net Community Impacts
- 8. Determine Biodiversity Impacts
- 9. Develop Project Design
- 10. Identify Sustainable Finance
- 11-13. Monitor Climate, Community & Biodiversity Impacts
- 14. Adaptation

- 1. Secure Stakeholder Support
- 2. Assess Original Conditions
- 3. Project and Assess Baseline
- 4. Assess and Develop Capacity
- 5. Assess Legal Status and Property Rights
- 6. Determine Net Climate Impacts
- 7. Determine Net Community Impacts
- 8. Determine Biodiversity Impacts
- 9. Develop Project Design
- 10. Identify Sustainable Finance
- 11-13. Monitor Climate, Community & Biodiversity Impacts

14. Adaptation

Guidelines, work books, best practice

- 1. Secure Stakeholder Support
- 2. Assess Original Conditions
- 3. Project and Assess Baseline
- 4. Assess and Develop Capacity
- 5. Assess Legal Status and Property Rights
- 6. Determine Net Climate Impacts
- 7. Determine Net Community Impacts
- 8. Determine Biodiversity Impacts
- 9. Develop Project Design
- 10. Identify Sustainable Finance

11-13. Monitor Climate, Community & Biodiversity Impacts

14. Adaptation

Quantitative tools & methods

- 1. Secure Stakeholder Support
- 2. Assess Original Conditions
- 3. Project and Assess Baseline
- 4. Assess and Develop Capacity
- 5. Assess Legal Status and Property Rights
- 6. Determine Net Climate Impacts
- 7. Determine Net Community Impacts
- 8. Determine Biodiversity Impacts
- 9. Develop Project Design
- 10. Identify Sustainable Finance

11-13. Monitor Climate, Community & Biodiversity Impacts

14. Adaptation

Specific to ecosystem co-benefits

Critical co-benefits questions

• How are ecosystem services and biodiversity currently provided on the landscape?

• How would they change under future baseline?

• How would they change with a REDD+ project?

• How *did* they change with a REDD+ project?

Benefits of answering these questions

- Stakeholders
 - Identify stakeholders with interest in co-benefits
 - Stimulate discussion and stakeholder engagement
 - Build local support & enable informed negotiations
- Project effectiveness
 - Select the best projects
 - Improve project efficiency
 - Enable learning and adaptive management
- 'Sell' at a premium and achieve co-benefits

Why the need for 'tools'?

- Too few studies, having too little impact
 - Expensive, difficult and interdisciplinary
 - Heavy data demands
 - Tend to be conducted by consultants/academics

- Tool development
 - Make analyses quick, easy, accessible
 - Enable use of a co-benefits approach

What characteristics must tools have?

- Multiple co-benefits biodiversity & services
- Quantitative biophysical estimates & econ values
- Spatially explicit mapped
- Usable at a range of scales
- Driven by scenarios e.g. with & without REDD
- Adaptable simple or complex

What does NatCap do?

WOODS INSTITUTE FOR THE ENVIRONMENT STANFORD UNIVERSITY

- Develop new ecosystem service science and tools
- 2. Apply new approaches in demonstration sites globally
- 3. Magnify our impact by engaging with leaders

www.naturalcapitalproject.org

What tools has NatCap developed?

InVEST: Integrated Valuation of Ecosystem Services and Tradeoffs

Objective:

Enable users to quantify, map & value the ecosystem service impacts of alternative land use decisions

Embed in context of clear policy needs

e.g. REDD, but also strategic environmental assessments, land-use planning, payments for ecosystem services, PRSPs, marine spatial plans, offsets

Characteristics of InVEST

- Biodiversity and multiple services
- Biophysical or (first estimate) economic values
- Spatially explicit (mapped)
- Tiered design: simple or complex
- Driven by user specified scenarios
- Usable at a range of scales

Free and open source http://invest.ecoinformatics.org

Multi-service: What's ready now?

- Biodiversity (proxy)
 Habitat rarity and integrity
- Ecosystem services
 - Carbon storage and sequestration
 - Avoided reservoir sedimentation
 - Hydropower production
 - Crop pollination
 - Commercial timber production
 - Water purification: nutrient retention
 - Storm peak flow mitigation
 - Open-access harvest
 - Irrigation water (for agriculture)
 - Agricultural production
 - Recreation and tourism
 - Cultural and aesthetic values

The InVEST Modeling Approach

- Use production functions
 - ES as function of land cover & other variables
 - Standard & widely applicable models
- Usable with relatively limited data
- Ready to use out-of-the box, but customizable

InVEST demonstration sites

Sumatra, Indonesia

- Policy Context: Land-use planning
- Lead Partner: WWF Indonesia
- Objective: Inform and catalyze sustainable financing (includes REDD and water payments)

Watersheds of Central Sumatra: 'Rimba corridor'

First workshop

- Technical (mapping) and policy staff from WWF and government agencies
 - Public works
 - Forestry
 - Environment
 - Home affairs

 InVEST training, policy discussions, work planning

Early results

Carbon

Water yield

Digital Elevation Mode

Kilometer

Sediment retention

Comparison with tiger priority areas

Carbon

Water yield

InVEST results: Hawaii

Another approach: Single service models

- Examples
 - SWAT and FIESTA for water yield
 - ClassLite for carbon
 - Real-time monitoring tools
- Advantages
 - Technically sophisticated
 - Established and peer reviewed
- Disadvantages
 - Data demanding
 - Not integrated into one tool

Other approaches: ARIES

- Assess and value ecosystem services
 - Artificial intelligence turns user input into causal model
 - Learns from relevant data and constructs cause-andeffect interactions
 - Simple or complex approaches possible
 - Scenario based

The University of Vermont

InVEST	ARIES
Deterministic models	Probabilistic models
ArcGIS interface	Web-based, customisable
Working on uncertainty	Fully probabilistic outputs
Standard models can be customised by user	Machine learning customises models
No use of benefits transfer. Standard econ valuation methods	Benefits transfer & multi-criteria approach to valuation
Simple 'proxy' for biodiversity	Overlay with IBAT information
Version 1.004 available online	Version 1.0 available later in 2010
User must collect data	Internal database

i.

InVEST testing and validation

- Testing against SWAT and FIESTA
 - Colombia and Ecuador
- Comparing with ARIES
 Arizona and Oregon

- Ground-truthing
 - China: water yield model explains > 90% of observed
 - Minnesota: water pollution model only 9% off observed

Emerging areas for NatCap

- Marine InVEST
- InVEST adjustments
 - Scenario generator
 - Uncertainty
 - Tier 2 models
- Health
 - Nutrition
 - Infectious diseases

- Distribution and equity
 - Who gains and who loses?

Questions for discussion

• Initial reactions?

• How can emerging tools contribute to REDD+?

• What else should tools be able to do?

THANK YOU!