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1. Introduction

Since 2000 the interest in forest biomass has been growing (Zianis and Mencuccini,2004, Henry, et
al., 2011, Parresol, 1999). Estimation of aboveground tree biomass is mainly conducted to support
sustainable management of forest resources. While tree volume equations were mainly developed
for timber management (Lanly and Lepitre,1970) and biomass equations for fuel wood production
(Millington, et al., 1994) the climate change crisis highlights the need to better assess the
contribution of terrestrial ecosystems to the global carbon cycle.

Better understanding tree growth is crucial to accurately quantify ecosystems’ contribution to the
global carbon cycle and to elaborate effective climate change strategies for mitigation and
adaptation (Bombelli, et al.,2009). Vegetation biomass, in particular, is an important ecological
variable for understanding the evolution and potential future changes of the climate system.
Vegetation is storing a large amount of carbon (550£100 Pg) on the order of the amount in the
atmosphere (800 Pg) (Houghton,2007). Changes in the amount of vegetation biomass already affect
the global atmosphere by being a net source of carbon, and having the potential either to sequester
carbon in the future or to become an even larger source (GTOS,2008, IPCC,2007).

Reducing Emissions from Deforestation and forest Degradation (REDD) may play an important role
for climate change mitigation and, moreover, an accurate estimate of emission factors is also
fundamental to develop and verify environmental policies and strategies. The Conference of the
Parties held in Copenhagen in 2009, under the UN framework convention on climate change
(UNFCCC), requests developing country Parties to establish robust and transparent monitoring
systems for forest and carbon stock (UNFCCC,2009).

Several methods have been used and tested to estimate tree biomass and carbon stocks (Valentini, et
al.,2000, Luyssaert, et al.,2007, Asner, et al., 2012, Kindermann, et al.,2008). The most common method
to assess forest biomass is based on the application of tree allometric equations to the forest inventory
data. Tree allometric equations relate difficult-to-measure tree parameters (such as volume or biomass)
to easy-to-measure dendrometric variables (such as diameter at breast height or tree height) (Picard, et
al.,2012). Different methods exist for developing tree allometric equations depending on the objective
(commercial volume, bio-energy, biomass or carbon), forest type (mono-specific or pluri-specific forest),
tree size, accessibility of the tree, forestry law, technical, financial and human capacities. In consequence,
the quality of the estimates varies between allometric equations and depends on the method for
destructive and semi-destructive measurements, individual tree assessment, and adjustment method
and model selection. The inappropriate use of tree allometric equations can also introduce significant
bias and errors. Therefore it is important to collect not only the mere formulas but also, if available, all
the related statistical, geographical, ecological parameters of the equation. Unfortunately, tree allometric
equations are often not easily available and, especially in developing countries, quite rare.

In order to identify the gaps and to make available the equations developed so far, comprehensive
collections of tree biomass regressions for North American species were compiled in the last years. A
diameter-based database of allometric equations for USA and Canada was developed in 2003
(Jenkins, et al.,2003), while a collection of equations for Mexico was published in 2009 (de Jong, et
al.,2009a) and then updated (Rojas et al. 2009) and published on line in 2012 (CONAFOR,2012).

As an identical forest classification was developed using the land cover classification system (Di
Gregorio and Jansen,2005) for the three countries, it appears that a more large scale database, such
as the present work, will facilitate data exchange and assessment of forest carbon stocks at regional
scale. Furthermore, geo referencing the data allows unambiguously identifying the equation
ecological zones, improving estimates of the equations geographic distribution and identifying the
potential gaps.
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2. Objectives of the report

The objectives of this report are to (1) provide an overview of the current status of tree volume and
biomass allometric equations in North America, (2) identify the gaps and future needs, (3) provide
recommendations for volume, biomass and carbon stock assessment, and (4) provide examples of
how to use the database and select the appropriate equation. The report analyses the various tree
allometric equations and identify their potential for assessing national volume, biomass and carbon
stocks and the validity and suitability for use in species that are found under the country’s climatic
characteristics.

3. The Compilation of the data

3.1 Review of available allometric equations

The first phase focuses on collection and review of selected literature concerning volume, biomass
and carbon stocks in North America.

The equations selected were mainly diameter-based with other possible co-variables such as height,
age, etc. No other selection criteria (such as R>-values, species, ages, sizes, site conditions, or
sampling methods) were used a priori.

The literature-survey was conducted on Internet and in specialized libraries and it is mainly based on
the contributions of Jenkins et al. (2003) and de Jong et al. (2009a). Online literature research was
conducted for sources that reported biomass and volume equations. A survey of online libraries
(Springerlink, Google Scholar etc.) and journals such as Canadian Journal of Forest Research, Forest
Ecology and Management, Forest Science, Ecological Monographs, Journal of Environmental Science
and Management, Oecologia .

It is worth remembering that the data compilation is not exhaustive and may have not considered all
the data. However, it is a first regional database that will be progressively completed.

During the data collection, both the hard and soft copies of all the documents cited in the database
were collected in order to make them available for further studies. With particular regard to Mexico,
the research was also conducted at the FAO FRA (Forest Resources Assessments) Library. The FAO
FRA library comprises a collection of FAO working papers, project field documents, country reports,
volume tables and forest inventories from the early 50s to the late 90s, and it was a precious source
of data and information which would otherwise be difficult to obtain. Other worldwide reviewed
libraries were, among others, the University of Idaho Library, Fort Hays State University Library,
David Lubin Memorial Library.

For U.S.A and Canada the thorough work of Jenkins at al. (2003) was a valuable source of
information, as well as previous regression compilations such as the one from Tritton and Hornbeck
(1982), Ter-Mikaelian and Korzukhin (1997) and Means et al (1994). For Mexico, the mentioned
national allometric equation database for aerial tree biomass, developed by de Jong et al. (2009a),
was used.

To make the consultation of bibliography and references easier and to export them in excel database
we used a RIS format reference management software (Thomson,2005).



3.2 Data classification and georeferencing

Once the documents were collected, the data were geo referenced and organized in order to make
them consistent with the template database that was elaborated.

A problematic point was related to the tree compartments predicted by the equation. In fact, there
is not a unique way to define the vegetation components (Fine roots-large roots, big branches-small
branches etc.) as well as there is not a standard and common definition for aboveground biomass or
growing stock (it may or may not include the stump, the bark, the top etc.). Therefore, in order to
standardize the data and make them easier to use, 11 different tree compartments have been
selected (Figure 1), thoroughly checking the original sources before entering the equations in the
database and carefully converting their component system into ours.

Crown diameter (m) Crown area (m?)

Bark
Dead branches
Gross branches: D>7cm

Thin branches: D<7cm

Crown height (m)
Branch volume (m3)
Leaf volume (m3)

Leaves
Large roots

Fine roots

Tree height (m)
Tree volume (m3)

Circumference or diameter Medium roots
(cm) at 1.3m

Stump

Log height (m)

Basal circumference or

N Trunk-underbark
diameter (cm)

Log volume (m3)

Basal area (m?) Fruit/seed

Figure 1. Tree components classification used in the present work (Henry, et al.,2011).

The name of the locations where the equations were developed and the corresponding latitude and
longitude coordinate were identified using the geographical information provided by the
documents. When only the name of the location was available, the geographic coordinates were
obtained using administrative maps and Google Earth. When the names of the locations were
missing and only a map with the localization of the plots in the field was available, the geographic
coordinates were obtained using administrative maps and the GIS software “Quantum GIS” (2012 ).
When it was not possible to unambiguously identify the location because the geographic position
was missing or too vague, the lack was reported in the database. If the equation was developed in
more than one location, all the locations were georeferenced.

Once the locations were georeferenced, they were categorized according to five ecological
classifications: FAO (FAO,2001), Udvardy (Udvardy,1975), WWF (WWF,2000), Bailey (Bailey,1989),
and Holdridge (Holdridge,1947, Leemans,1992). Climatic parameters, such as temperature (T),
precipitation (ppt) and wind (W) were obtained using the software New LocClim (FAO,2005).
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Additional classifications were achieved according to the ecosystem type (plantation or forest) and
the level of population (Lianas, Mangroves, individual tree, sprouts and stand) considered. Where
available, also some relevant regression statistics were reported, such as R? values (coefficient of
determination of the equation), R* adjusted, the diameter ranges over which the equations were
developed and the sample sizes of trees harvested to develop the regression.

A detailed bibliography is provided to allow readers to consult the original source of the equation.
The present work tried to be more comprehensive as possible but some lacks in the documentation
are inevitable. Anyway the database is designed to allow a constant updating of the data and
existing gaps or inaccurate information can be addressed in the future.

3.3 Tutorial for data insertion

In order to facilitate the data insertion and the usability of the database, a specific tutorial (Baldasso,
et al.,2012) was created. The tutorial provides detailed information on the database structure and
proposed procedures and methodology for entering the data. Additional useful information is also
provided such as how to search articles, reports and documents containing allometric equations;
how to manage the references using RIS format reference management software; how to
georeference and to spatialize the data.



4. Database Description and Structure

The database is composed by 71 variables (Appendix 2) that can be grouped in seven categories: (1)
plant ecology (i.e. if the equation refers to trees, stands, mangroves, or sprouts) and provenance of
the plants (forest or plantation). (2) Geographical localization of the plots where the plants were
harvested (continent, country, location, latitude, longitude and the corresponding biome), (3)
Equation parameters (dependant and independent variables, unit of measurement and range of
application). (4) Plant vegetation components (a binary system of 11 columns as represented in
Figure 1 allows the identification of considered tree components). (5) Botanical name (family, genus
and species). (6) Statistical information (sample size, coefficient of determination, standard error
etc.) (7) Bibliographic references (author, title, year of publication, reference index in the database
library).

The table in Appendix 2 includes detailed definition for each variable. Please refer to Baldasso et al.
(2012) for further information. The list of acronyms is available in Appendix 1.
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5. Tree allometric equations in North America

5.1 Historical trend

The pioneering tree biomass studies in north America were conducted in the early 60s (Young, et
al.,1980), and mainly in the USA and Canada. These early studies faced some logistic and statistical
problems such as 1) individuate the most economical and efficient way to remove tree from the
ground without damaging the roots, 2) elaborate size classes for categorize the major component of
the trees, 3) identify the numbers of subsamples to be used for moisture content and leaf mass
analysis.

Once these basic aspects of biomass data collection were solved the researches started focusing on
sampling on a regional or state basis. During the following two decades (1970-1990) a considerable
amount of state-specific equations were developed (Figure 2). In the last decade the interest in
forest biomass started growing (Zianis and Mencuccini,2004), especially in tropical countries. In this
period the number of tree allometry researches in Mexico has grown significantly, reaching an
average of about 5 new articles per year in the period 2001-2009.

As the database is mainly based on the contribution of Jenkins for USA and Canada (Jenkins, et
al.,2003), we have not yet enough data to infer a trend for that region for the period after 2003.
However the database is designed to be constantly updated and the existing gaps will be addressed
in the future.

A}

35

30

2}

15

Number of Articles

10

1965 1970 1975 1980 1985 1990 1995 2000 2005

Figure 2. Number of published articles per year
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Geographical Distribution of the Equations

The equations are unevenly distributed among the countries (Figure 3). Almost 70% of equations
were developed in USA (n=1807), 18% in Canada (n=467) and 13% in Mexico (n=319).

Figure 3. Number of equations per country

According with the FAO Global ecological zoning for the global forest resources assessment
(FAO,2001), most of the equations were developed in temperate mountain system (29%), temperate
continental forest (28%), subtropical humid forest (24%). The other 13 zones represent less than 18%.
Tropical dry forests (n=11), boreal coniferous forests (n=10), boreal tundra woodlands (n=7) seem to
be particularly under-represented, these three zones represent overall less than 1% (Figure 4).

Tropical raintorest

ITropical mountain system
Tropical moist deciduous forest
Iropical dey forest

Temperate steppe

lemperate oceanic forest
Temperate mountain system o8
lemperate desert

Temperate continental forest 995
Subtropical steppe
LSubtropical mountain system
Subtropical humid forest
subtropical desert

Boreal tundra woodland

Boreal mountain system

Boreal coniterous forest

Figure 4. Number of equations per ecological zone classification. FAO ecological zone classification

In consequences, certain ecological zones such as subtropical dry forest are not represented in this
database while this ecological zone is frequently found e.g. in coastal part of California. The figure
below (Figure 5) represents the geographical distribution of the equations. It appears that more than
300 equations are mainly concentrated in the south east and in the pacific northwest of USA.
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* Equations
Boreal Biomes
Subtropical Biomes

B Temperate Biomes

B Tropical Biomes

—
TE

Figure 5. Geographical distribution of the sample plots in North America. The red dots represent the sites

where equations were developed.

Tree Species to which equations Refer

266 species are present in the database, belonging to 116 genera and to 61 families. The families
most frequently studied were Pinaceae (Figure 6), representing the 36% of the equation (n=1002),
Fagaceae 14% (n=405) Aceraceae 8% (n=222), Betulaceae 7% (n=201), and Salicaceae 6% (n=178).
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Figure 6. Number of equations per family

The most studied genera are Quercus (n=353), Pinus (n=334) , Acer (n=222), Picea (n=211), Betula
(n=183), Pseudotsuga (n=170), Populus (n=167), respectively with the 12%,11%, 7%, 7%, 6%, 5%, 5%
of the total equations (Figure 7).

a53
434
313
222 311
485 167 170
124 116
70 . 6 b » 63
35 Loig
14 2 25 21
i’bﬁé‘ﬁ’\ﬁﬁ@?s"’ﬁéqﬁ P R S R
5 . S & ol O N @ S N
W Y T 5@ VS eﬁdﬂgﬁ* T o g & &
RS b R o
Sig &

Figure 7. Number of equations per genus

The distribution of the equations per species is rather more homogenous (Figure 8). The most
studied species were Pseudotsuga menziesii with the 5% of total equations (n=170), Acer rubrum 4%
(n=125) Populus tremuloides 2% (n=82) Acer saccharum 2% (n=79) and Olneya tesota 2% (n=78).
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Figure 8. Number of equations per main species

The analysis reflects overall a certain disproportion in the interest for some families and for some
genera, in particular for the more merchantable ones, such as Pinus, Quercus, Picea.

Figure 9 represents the number of studied species per country.

Figure 9.Number of studied species per country

According with the Global Forest Resources Assessment 2005 (FAO,2006) Mexico has the largest
tree biodiversity (Mexico:1130 native tree species, USA:1051 and Canada:180 species). Comparing
these data with the previous ones it appears that the analyzed trees species represent no more than
15% of the total existing trees for Canada, 13% for the USA and 12% for Mexico. Considering that the
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optimal condition would be to have at least an equation for each tree species, it is evident that there
is still a relevant gap in the number of studied species. The situation in North America, however, is
significantly better than other continents. For Sub-Sahara African forests, for example, only the 2%
of tree species have been studied so far (Henry, et al.,2011).

Despite Mexico developed a much smaller quantity of equations than USA (319 rather than 1807)
there is not a relevant difference in the proportion of studied trees species over the total of tree
species (12% rather than 13%). It appears that the most part of biomass researches in USA focused
mainly on a few number of trees whereas the Mexican studies analyzed a wider range of species.
The bigger interest of the Mexican researches for biodiversity is also confirmed by the analysis of the
number of studied plant families per country (Figure 10). Mexico has the largest number of studied
families (n=45) followed by USA (n=33) and Canada (n=8). The small number of analyzed families for
Canada is likely due to less rich flora diversity then the other two countries.

—— Canada, 8

Figure 10. Number of studied plant families per country

Tree Compartments considered by the equations

Most of the studies focused on merchantable wood production would tend to consider only the
stem, studies for fodder production would put more attention on the foliage, whereas C stock
researches would tend to be more comprehensive as possible, including also roots, branches or
twigs . As it is shown in Figure 11, most of the equations focused on the whole tree (above stump)
(17%), stem (wood and bark) (13%) and foliage (11%).Equations for stem biomass represent about
41% of the total. Results suggests that researches mainly focused on commercial production.
Interest in root biomass assessment is significantly lower (1.8%), and is probably related to time cost
and difficulty for measurements. Equations predicting total (above ground and belowground)
biomass are even less (1.7%).
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Cones

Stem + branches (bark only)

Dead crown (branches + foliage + twigs)
Stemtop

Stump

Complete tree (above + belowground)
Twigs

Roats

Crown (branches + toliage + twigs)
Branches dead

Stem + branches (wood only)
Branches live

Stem + branches {live)

Whole tree (above stump)

Stem (bark only)

Branches total (live + dead)

Stem (wood only)

Foliage

Stem (wood + bark)

Wholetree (abovepround) 510

Figure 11.Number of equations per tree components

More of the 90% of the Mexican equations predict the whole tree biomass. The reason for this
disproportion is that the Mexican part of the database is mainly based on the work of de Jong et al.
(2009a) which is almost entirely a compilation of tree aerial biomass regressions.
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6. Study case: assessing stem biomass of Picea Glauca

For more clarification an example of how to find and apply a specific equation from the database is
provided. The example concerns quantifying the stem biomass (wood + bark) for a plot of Picea
glauca in Canada within the “temperate continental forest” FAO biome classification.

In this example, data of DBH and species composition for the plot are already available.

Equations predicting biomass (column Output) for stem (Trunk + Bark) for Picea glauca (column
genus and species) are selected for “temperate continental forest” zone (column Biome_FAOQ). Four
equations meet these criteria: two equations from Freedman (1984), ID 3533 & ID 3521, one
equations from Harding and Grigal (1985), ID 13521, and one from Ker (1980b), ID 3645.

Each equation predicts different biomass values and differs from the other ones for some relevant
parameters such as sample size, diameter range of applicability and coefficient of determination.
The four equations are plotted in the Figure 12.

Componant: B + T
{Mumber of Equation: 4; Number of Location: 3; Number of Species: 1)

0.45 T
T T T T T T T Ry

3533
0.4 3645
— 135156

035 .

Biomass (1)

a5 40 a5 50

DEH {em)

Figure 12. Plot of four equations predicting stem biomass for Picea glauca for temperate continental forest.

When choosing the equation that best fits the research’s needs, the user can utilize the meta-
information reported in the database. Considering that equation ID 3645 has the widest range of
applicability (it was developed using trees whose DBH values ranges from 0.1 to 40 cm, while other
equations do not range over 32 cm, as specified in columns “Min_X" and “Max_X") and the biggest
sample size (n = 200, as specified in column “Sample_size”) the user may prefer it to the other ones,
especially in the case the plot contains trees bigger than 32 cm. It is clear from the graph that
equation ID 3645 is also the one providing the most conservative biomass value.

On the contrary, if the plot does not contain trees bigger than 32 cm, and coefficient of
determination of the equation (column “R2”) is chosen as main selection criterion, the user may
want to prefer equation ID 3533 that has the biggest R value (R2=0.989).
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7. Study case: National biomass and carbon estimation in Mexico using
biomass allometric equations

As part of the project Reinforcing REDD+ Readiness in Mexico and Enabling South-South
Cooperationl, a national-level estimation of forest biomass carbon was conducted using de Jong et
al.’s (2009a) compilation as described in this paper. This compilation was updated to 2012 and 89
new equations were added (Appendix 3) . All equations employed are for whole tree biomass.

Our goal is to investigate how uncertainty associated to the national biomass carbon estimation in
Mexico may be affected by the decision tree employed for the selection of biomass allometric
equations. Differences in total biomass carbon estimated and associated uncertainty when using
different decision trees have a paramount importance for countries when reporting carbon stock
changes and to measure, report and validate carbon credits under different financial mechanisms,
e.g., REDD+. This is particularly important for countries with a significant pool of allometry
information such as Mexico.

To estimate national biomass carbon, we employed de Jong et al. (2009a) compilation, Mexico’s
National Forest Inventory data for 2004-2007 (CONAFOR,2011) and the national vegetation type and
land use map provided by the National Institute of Statistics, Geography and Information for 2007
(INEGI,2007). INEGI’s (2007) 152 vegetation types and land use classes were aggregated to 17 super
classes as defined in Mexico’s National Greenhouse Gas Inventory for 1990-2006 (de Jong, et
al.,2009b). These classes were then post-stratified using a two-step cluster analysis based on plot-
level basal area as estimated by National Forest Inventory data for closely 17,000 sampling plots
which are systematically located across forests in Mexico. A total of 51 classes were used for
biomass carbon and uncertainty estimation. Weighted means (tons of biomass carbon per hectare)
were calculated in order to re-group results to the 17 classes for reporting.

Table 1. Area by forest stratum for INEGI (2007) and grouped by de Jong et al. (2009) for the 1990-
2006 National GHG Inventory.

Coniferous Forests - P 107182 Pseudotsuga forest - P 263
Coniferous Forests - P Cupressus forest - P 19
Coniferous Forests - P Abies forest - P 1245
Coniferous Forests - P Pine-oak forest - P 53070
Coniferous Forests - P Pine forest - P 51124
Coniferous Forests - P Juniperus forest - P 1461
Coniferous Forests - S 60312 Pseudotsuga forest - S 136
Coniferous Forests - S Cupressus forest - S 1
Coniferous Forests - S Abies forest - S 245
Coniferous Forests - S Pine-oak forest - P 33126
Coniferous Forests - S Pine forest - S 24919

1
See www.mrv.mx
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1990-2006 National GHG Area (km?) Vegetation types by INEGI (2007) Area (km?)

Inventory reporting classes

Coniferous Forests - S Juniperus forest - S 1885
Oak forest - P 95955 Oak-pine forest - P 29750
Oak forest - P Oak forest - P 66205
Oak forest - S 59546 Oak-pine forest - S 13368
Oak forest - S Oak forest - S 46178
Cloud forest - P 8475 Cloud forest - P 8475
Cloud forest - S 9942 Cloud forest - S 9942
Tropical dry forest - P 63924 Short stature, tropical dry forest - P 62547
Tropical dry forest - P Medium height, tropical dry forest - P 1378
Tropical dry forest - S 90086 Short stature, tropical dry forest - S 80939
Tropical dry forest - S Medium height, tropical dry forest - S 9147
Thorn woodland - P 6650 Thorn dry woodland - P 2265
Thorn woodland - P Thorn evergreen woodland - P 4385
Thorn woodland - S 11355 Thorn dry woodland - S 4748
Thorn woodland - S Thorn evergreen woodland - S 6607
Tropical evergreen forest - P 29773 Tropical evergreen forest - P 13408
Tropical evergreen forest - P Tropical sub-evergreen forest - P 587
Tropical evergreen forest - P Short stature, tropical evergreen forest- P 378
Tropical evergreen forest - P Medium height, tropical evergreen forest - P 3
Tropical evergreen forest - P Medium height, tropical sub- evergreen forest-P 15397
Tropical evergreen forest - S 61780 Tropical evergreen forest - S 19746
Tropical evergreen forest - S Tropical sub-evergreen forest - S 1069
Tropical evergreen forest - S Short stature, tropical evergreen forest- S 50
Tropical evergreen forest - S Medium height, tropical evergreen forest — S 4
Tropical evergreen forest - S Medium height, tropical sub- evergreen forest -S 40912
Tropical deciduous forest - P 4733 Short stature, tropical deciduous forest - P 460
Tropical deciduous forest - P Medium height, tropical deciduous forest - P 4274
Tropical deciduous forest - S 39410 Short stature, tropical deciduous forest - S 225
Tropical deciduous forest - S Medium height, tropical deciduous forest - S 39185
Swamp vegetation - P 9234 Temperate, riparian forest - P 200
Swamp vegetation - P Mangrove - P 8546
Swamp vegetation - P Tropical, riparian forest - P 33
Swamp vegetation - P Peten vegetation - P 454
Swamp vegetation - S 949 Temperate, riparian forest - S 26
Swamp vegetation - S Mangrove - S 912
Swamp vegetation - S Tropical, riparian forest - S 11
Total 659307 Total 659307
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National Forest Inventory data was standardized for tree DBH, tree total height and the relation of
total tree height against DBH using a 3-standard deviation criterion for normal distributions. The
same procedure was followed for standardizing plot-level biomass carbon. Quality controls were
executed for tree taxonomy according to Valencia (2004), Villasefior (2004), CONABIO (2008) and
CONAFOR (2011).

Species-specific wood densities and carbon fractions values, that are not provided by the allometric
equation database, were employed when available in literature (i.e. 61 carbon fractions from
scientific literature and 214 wood density values obtained from Zanne et al. (2009), for example for
Chave’s et al (2005) pantropical equations. If this information was not available then forest type
wood densities (i.e. according to de Jong et al. (2009b)) and a national carbon fraction average of
0.48 was employed (according to the 61 carbon fractions average).

Uncertainty for total biomass carbon was estimated using the Monte Carlo method (IPCC,2006).
Maximum likelihood tests were employed to estimate probability density function (PDF) parameters
by stratum. For temperate forests, strata are defined by floristic attributes (the dominant species
serves as the main classifier) and for tropical forests climactic criteria are employed for stratification
(phenology and rainfall seasonality). A total of 17 strata were defined (Table 1) which group INEGI
(2007) original 152 classes. The 17 classes also have associated a successional stage attribute
(primary or secondary formations). Ten thousand random numbers were generated using these
parameters to create each stratum’s simulated PDF. The mean and percentiles 2.5th and 97.5th
were calculated from the simulated PDF to estimate uncertainty based on IPCC Guidelines (2006).
Total uncertainty does not consider the allometric equation’s error and only include the inherent
variation of estimated biomass carbon by forest class. We recognize that allometric models may
yield large estimation errors when applied ((Chave, et al.,2005), (Vieilledent, et al.,2012)) and this is
why the estimation was mostly conducted within DBH applicability ranges of the models and
statistical parameters of model error (mean quadratic error and R2) used as selection criteria.
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Uncertainty as presented here is a measure of the variability of a particular variable, in this case total
biomass carbon in Mexico (Figure 14). Because the uncertainty range is determined by the variability
of the carbon stock, more aggregated strata will yield higher uncertainties in a Monte Carlo
approach. The same stratification is employed for all decision trees so this would not be a factor
affecting the final uncertainty estimates.

Percentile 2.5 Mean Percentile 7.5
3 f ]
95% ity mamge
= 3 =
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a 2 0 2 A
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Figure 14. Graphical representation of the uncertainty range for carbon stock change x for a given stratum.
Uncertainty is -50%, 50%, however, for asymmetric distributions the upper end may increase. Monte Carlo is
thus able to account for asymmetric and non-normal distributions. Same procedure is followed for the
uncertainty estimation for carbon stock y. Source: modified from IPCC (2006, Vol 1, Ch 3: Uncertainties).

Three equation selection decision trees were tested on the same National Forest Inventory data,
forest stratification, following the same estimation methods (i.e. including wood density values and
carbon fractions employed) and based on the same pool of equations. The decision trees differ in
the criteria to rank and assign equations to individual trees. The flow charts of the decision trees are
showed in Figure 15, Figure 16 and Figure 17.
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Table 2. Characteristics of the decision trees employed for the estimation of biomass carbon in

Mexico.

Pre-requisites

Decision tree 1

None

Decision tree 2

All models are built with at
least 30 trees

Decision tree 3

None

Statistical DBH range, MSE, Rz, tree species, DBH range, MSE, RZ, tree Number of trees used to build
parameters genus, forest type associated and species, genus and forest the model, DBH range, MSE,
spatial location type associated tree species, genus and forest
type associated
Goal Prioritize species-specific equations Prioritize species-specific Compares the best model at
within applicable DBH range equations within applicable different levels for each tree
DBH range and selects for minimum MSE
Algorithm Species-specific equations have lower Species-specific equations Low error (uncertainty)
assumptions uncertainties than higher-level have lower uncertainties models are more accurate in
equations (e.g. genus, forest type) than higher-level equations predicting tree biomass
(e.g. genus, forest type) regardless of their level of
application
Additional Adequate for conifer forests with low Prioritizes species-specific Adequate when model
information species diversity. Performs poorly in models but is more metadata is available; models

diverse tropical forests or where
species-specific models are not
available. If a model is applied outside
its DBH applicability range it is done
first using species-level models and
then by genus- and forest type- level
models

restrictive in their use. For
example, raises standards
for statistically robust
models and thus increases
the number of trees
estimated with generic,
forest type equations within
and outside their
applicability range

lacking this information will
be automatically excluded

24 |




[~ ' ~
Species-level v[&‘r . .
equation, where tree : S‘clem the equation Select the equation Se]:e::‘l th.e- equation
DBH is within (& T with a smaller mean & with a laroer B2 spatially closer to the
dp[:llluhllll_'. TgE quadratic error - ree
A
u.
'f —.

Genus-level equation,
where tree DBH is

within applicability
FANEE
\.
i)
wae gound
(

Farest type-level
equation, where e
DDBIT is within
applicability range

Figure 15. Decision tree 1. Species-specific allometric equations are prioritized within DBH applicability ranges
for the models. If more than one equation is available at this level, the model with the smallest mean
quadratic error, R2 or closer to the spatial location of the tree is selected, in that order. If no models were
found at the species level, the same selection procedure is applied at the genus and forest type levels. This are
also applied within DBH applicability ranges for the models employed. Similarly, if no models are found within
these ranges then the same procedure is followed (i.e. from species to genus and forest type levels) outside
the model’s applicability ranges.
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Figure 16. Decision tree 2. Species, genus and forest-type models are selected, in that order, within DBH
applicability ranges defined in the models. The smallest mean quadratic error or the R2 is selected when >1
models are available at any level. Only models built with >30 sampled trees are considered for the decision tree.
If the models do not have an R associated, because it is not reported by the author o if the metadata has not
yvet been compiled, then the model is not accounted for in the decision tree. It is basically excluded from the
analysis. If this happens , the selection process is taken to a higher level (genus or forest type equations) for a
particular tree.
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Figure 17. Decision tree 3. A preliminary assessment is undertaken to determine whether equations at
different levels are applicable for a particular tree in the inventory (e.g. a species and genus-level equation
could be used to estimate the biomass of a 20 cm DBH Pinus patula). Once the appropriate level(s) are chosen
(boxes arranged vertically after start) the decision tree shown after “A” is followed. This is done within the
models’ DBH applicability ranges. If no models are applicable within their applicability ranges all levels are
considered outside their applicability range and “A” is followed (See **). If the models do not have an MSE
associated, because it is not reported by the author o if the metadata has not yet been compiled, then the
model is not accounted for in the decision tree. It is basically excluded from the analysis.
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Main findings

We found that uncertainty and total biomass carbon estimated varied according to the decision tree
employed (Table 3). Differences in the uncertainty estimates were due to the application of different
biomass models since the application of forest stratification, wood density values and carbon
fractions was the same for all decision trees.

We also observed that uncertainty did not decrease with an increased use of species or genus
specific models (Figure 18). Uncertainty was also not correlated to the number of equations
employed in each decision tree (decision trees 1, 2 and 3 used 64, 29 and 114 equations,
respectively, from the 339 equation pool; the first decision tree with 64 equations yielded the lowest
uncertainty). This may provide an argument for creating generic or forest type models instead of
investing in species- or genus-level equations, however, model error should be assess prior to this.

For example, decision tree 3 was more efficient in selecting species- or genus-level equations but
only presented an averaged uncertainty.

Despite the similarity of Decision trees 1 and 2, their uncertainties were very different which may
suggest that any additional criteria in Decision tree 1 may have contributed to a lower uncertainty. In
this regard, using geographic coordinates to assign biomass allometric equation may have cause
estimation errors at the small scale (i.e. stands may vary considerably in structure and biomass
content within meters) but at larger scales the criterion could be useful to avoid using equations
built in different geo-climatic conditions to where the tree that is being estimated is located.

Decision trees 2 and 3 used a minimum criteria of 30 trees used for constructing the biomass
models. Both presented higher uncertainties than Decision tree 1, but it would be risky to conclude
that this criterion accounted for an increased uncertainty in the estimates.

Generally, it appears that decision trees built using the criteria applied here (Table 3) will provide a
good selection of equations if metadata is available (i.e. uncertainty was fairly constant in all
decision trees in the range -13, +19%. Metadata is important as key information to select equations.
Table 4 shows metadata available for the equations for Mexico. Given that we found no apparent
correlation between the number of models used and uncertainty, it is advisable to employ as many
and better models as possible to reduce bias.

Finally, if the models and data are available to countries we recommend that this process is repeated
and several decision trees are tested prior to selecting one. Mexico is currently improving the
information (metadata) that goes into informing the decision trees, collecting wood density values
and creating better models at the forest-type level, since these are most frequently used in the
estimation.
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Table 3. National biomass carbon estimation using different decision trees for selecting biomass
allometric models.

Decision tree 1 Decision tree 2 Decision tree 3

Estimated biomass carbon at national level 1.68 1.44 1.33
(1073 millions of tons of C)

Probability density function Log normal Log normal Log normal
Uncertainty lower end -13% -16% -14%
Uncertainty higher end +14% +19% +16%
p-value associated to the AIC criterion in the 0.27 0.20 0.85

Monte Carlo analysis. The p-value indicates
the probability that the PDF and, hence, the
percentiles estimated to build the uncertainty
range come from a known distribution that
was fit using goodness of fit tests and the
maximum likelihood criterion.
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Figure 18. Application of biomass allometric equation by level for the three decision trees employed.
Uncertainty estimates are -11, +12; -16, +19; and -14, +16, for decision trees 1, 2 and 3, respectively.
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Table 4. Percentage (%) of available metadata associated to biomass allometric models in Mexico
(n=339).

All models Species-level  Genus-level Forest-type level
Number of models 339 273 50 16
e 35 37 22 43
Mean square error 8 7 8 31
Root mean square error 1 1 4 0
Standard error 14 13 14 25
Mean biomass 0 0 0 0
Biomass variance 1 1 0 0
Number of trees 36 36 28 62
Carbon fraction 2 1 10 0
Minimum wood density 0 0 0 0
Maximum wood density 0 0 0 0
Mean wood density 3 4 0 0
Minimum DBH 60 60 58 62
Maximum DBH 58 58 56 62
Mean DBH 8 7 8 12
Minimum rainfall 47 52 32 18
Maximum rainfall 11 11 12 0
Mean rainfall 11 11 14 6
Minimum temperature 7 6 12 0
Maximum temperature 7 6 12 0
Mean temperature 22 25 10 12
Maximum elevation 22 25 16 0
Minimum elevation 18 19 18 0
Mean elevation 5 6 2 0
Climate type 48 53 30 25
Soil type 34 37 30 6
Management type 0 0 2 0
Natural disturbances 2 2 6 0
State 64 66 68 18
Geographic coordinates 35 34 46 18
Year published 80 77 96 81

* Shaded lines are criteria used in the decision trees.
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8. Gaps in assessing volume and biomass in North America

The database is only a first attempt to create a comprehensive collection of tree allometric
equations for North America. Some lacks are inevitable. The database, however, is designed to allow
a constant updating of the data and existing gaps can be addressed in the future.

Relying on the data collected as far, the present study shows that for Mexico there is a smaller
number of available equations (only 319 compared with the 1809 of USA or 467 of Canada). It
appears that three of the 14 ecological zones occurring in north America (FAO,2006) have more than
80% of the total equations. Important and widespread biomes, such as boreal coniferous forest,
tropical rainforest, tropical dry forest are particularly under-represented.

The distribution of equations per tree species is not homogenous, with a marked preference for the
more economically important family, such as Pinaceae and Fagaceae. The data suggest that only the
14% of the tree species of North America have been studied.

Concerning the tree component more than 40% of the equations refers to the tree stem, whereas
the equations for aboveground biomass represent only the 14% and for underground biomass and
roots less than 3%. Under-ground biomass is equally important for the estimate of carbon stock, and
especially in dry region.
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9. Recommendations

It would be important to update the database by conducting a literature review for USA and Canada
for the period after 2003. For Mexico it is necessary to deepen the literature analysis, especially
including in the database the regressions for tree above ground components.

The equations collected so far should be subjected to a quality control in order to check their
consistence and the intervals of calibration (Henry, et al.,2011).

Further studies should also go in the direction to fill the existing gaps in the allometric equations
inventory: 1) to improve the geographical distribution of the sample plots, including the under-
represented biomes, such as boreal coniferous forest, tropical rainforest, tropical dry forest and
subtropical dry forests; 2) to develop equations for new tree species that are prioritized according to
their contribution to total volume/biomass/carbon; 3) to increase the production of new allometric
equation for Mexico; 4) to stimulate allometry research for tree aboveground components.

In order to improve the quality of biomass assessment and to develop new and more accurate
models, it is also necessary to develop a comprehensive wood density and raw data database at
regional scale, collecting all the available measured tree biomass values for North America.
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Appendices

Appendix 1. List of the Acronym used in the database.

Acronym Description Unit Population ‘

BA Basal area: Stem cross-sectional area at DBH (1m30 height) cm? TREE
BAO Stem cross-sectional area at the soil cm’ TREE
BD Basal diameter cm TREE
C Circumference at 1.3m cm TREE
C10 Circumference at 10 cm height cm TREE
C180 Circumference at 180 cm height cm TREE
C20 Circumference at 20 cm height cm TREE
C30 Circumference at 30 cm height cm TREE
C50 Circumference at 50 cm height cm TREE
Ca Canopy area m? TREE
CA Crown area cm’ TREE
Ch Basal circumference cm TREE
Ch5 Circonference at 5 cm from soil cm TREE
CcD Crown diameter Cm TREE
CH Crown height cm TREE
CR Crown radius cm TREE
cv Canopy volume cm’® TREE
D20 Diameter at 20cm height cm TREE
D30 Diameter at 30cm height cm TREE
DBH Diameter at breast height cm TREE
H Height cm TREE
Hd Stand dominant height cm STAND
Hme Merchantable height cm TREE
Ht Height of the trunk cm TREE
M_DBH Average of DBH cm STAND
N Number of trees Tree*ha” STAND
R tree ring nr TREE
SUMD10 Sum of the diameters at 10 cm from the soil Cm STAND
Yr Year yr TREE
Vs Stem volume dm3 TREE
WD Wood density g*cm'3 TREE
Age Age of the trees yr STAND
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Appendix 2. List of data needed to insert a new allometric equation into the database.

N. FIELD DESCRITPION EXAMPLES Notes
1 D Identification number of the allometric equation. 1188 a.c.
Each equation has its own ID reference, two different equations cannot have the same ID.
2 Population Lianas: woody climbing plants mainly of tropical forests; Tree a.
Mangroves: evergreen trees or shrubs of tropical forests, having prop roots and stems and forming
dense thickets along tidal shores;
Sprout: is a shoot which grows from a bud at the base of a tree or from a shrub or from its roots;
Stand: contiguous area that contains a number of trees;
Tree: woody plant having a main trunk and usually a distinct crown.
3 Ecosystem Forest Forest a.
Plantation
Hedgerow
Home garden
Tree outside forest
4  Continent Name of the continent where the equation was developed Africa a.
5 Country Name of the country using the GAUL nomenclature (Global Administrative Unit Layers, FAO). Burkina Faso a.
Write “None” when the allometric equation does not refer to any country.
6 ID_Location Identification number of the location. 6772 a.c.

In the same article for the same location they could be more than one equation.
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7  Group_Location Identification number of the group locations. 24
When an allometric equation is valid for a group of locations.
Write “None” when the allometric equation does not refer to any group location.
Always provide a separate list with the Group_Locations you used in the database, each one with the
corresponding ID.
8 Location Location corresponds to the name of the place where the equation was developed It can be a precise Laba
location (city, village..) or a geographical area.
Search a location as precisely as possible.
Write “None” when the allometric equation does not refer to any location.
9 Latitude Decimal degrees 41.899566
Write “None” when the allometric equation does not refer to any latitude.
10 Longitude Decimal degrees 12.515275
Write “None” when the allometric equation does not refer to any longitude.
11 Biome_FAO Global Ecological Zones Tropical dry forest
12 Biome_UDVARDY Global Ecological Zones Tropical dry forests /
Woodlands
13 Biome_WWEF Global Ecological Zones Tropical & Subtropical
Grasslands, Savannas &
Shrublands
14 Division_BAILEY Global Ecological Zones SAVANNA DIVISION
15 Biome_HOLDRIDGE Global Ecological Zones Tropical dry forest
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16

Independent variable (see below). BA

e.g.:

BA (basal area, the cross-sectional area of the stem at breast height), Bd (diameter at soil), Bd5
(diameter at 5 cm from soil), C (circumference at breast height), Cb (circumference at soil), Cd5
(circumference at 5 cm from soil), D10 (diameter at 10 cm of height from the soil), DBH (diameter of
the stem at breast height), H (height), wd (wood density).Look at the end of the tutorial for an
exhaustive list of the acronyms to be used.

17

Unit_X

Unit measure (mm, cm, cm2, cm3, dm, gcm-3, m, m2...).Always keep the unit of measurement cm
reported by the author.

18

Independent variable. DBH
Cannot be there a second variable.

Write “None” when you have not this data.

19

Unit_Z

Unit measure cm

Write “None” when you have not this data.

20

Independent variable. H

Write “None” when you have not this data.

21

Unit_ W

Unit measure. m

Write “None” when you have not this data.

22

Independent variable. -

Write “None” when you have not this data.

23

Unit_U

Unit measure -

Write “None” when you have not this data.

24

Independent variable. -

Write “None” when you have not this data.

25

Unit_V

Unit measure. -

Write “None” when you have not this data.
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26 Min_X It is the minimum X value. 10cm
Write “None” when you have not this data.
27 Max_X It is the maximum X value. 40 cm
Write “None” when you have not this data.
28 Min_Z It is the minimum Z value. 3,6 m
Write “None” when you have not this data.
29 Max Z It is the maximum Z value. 7,8 m
Write “None” when you have not this data.
30 Output It is the dependent variable: Y biomass
It can express:
- Biomass
- Volume
31 Output_TR The output of the equation can be expressed in the Log(Y) or in the arithmetic value of Y, in which case Logl10
you don’t specify anything.
When the result of the equation is a logarithm you have to specify if it is a natural logarithm (Log) or a
logarithm to base b = 10, the common logarithm (Log10).
Write “None” if “Y” does not refer to any log.
32  Unit Y Unit measure of Y (e.g. cm3, dm3, m3, m3/ha, g, kg, Mg, kg/ha, Mg/ha...). kg
33 Age Age of the population considered in the experiment (years). 20

It can be a precise number (e.g. 20) or a range (e.g. 20-40) or a definition (eg. young...).

Write “None” when you have not this data.
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34 Veg_Component

They are the vegetation components of the plants considered in the equation (see below).
e.g.:

Branch biomass

Branch biomass without twigs

Biomass of roots (RC+RF+RS)

Biomass of dead branches

Biomass of stem bark

Biomass of small roots

Biomass of fine roots

Crown biomass (BR+FL)

Prop roots

Stem volume

Stem wood biomass

Stump biomass

Total aboveground biomass

Total foliage biomass

Total stem biomass (SW+SB)

Total tree biomass (AB+RT)

Total aboveground biomass without leaves
Total aboveground woody biomass

Total stem biomass (SW+SB)

a.

35

Bark
Write “TRUE “if bark is considered in the output;

Write “FALSE “if this component is not considered.

TRUE

36

Bd

Dead branches
Write “TRUE “if dead branches are considered in the output;

Write “FALSE “if this component is not considered.

37

Bg

Gross branches: D>7 cm
Write “TRUE “if gross branches are considered in the output;

Write “FALSE “if this component is not considered.

38

Bt

Thin branches: D<7 cm
Write “TRUE” if thin branches are considered in the output;

Write “FALSE” if this component is not considered.
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39

Leaves
Write “TRUE” if leaves are considered in the output;

Write “FALSE” if this component is not considered.

40

Rb

Large roots
Write “TRUE” if write are considered in the output;

Write “FALSE” if this component is not considered.

41

Rf

Fine roots
Write “TRUE” if fine roots are considered in the output;

Write “FALSE” if this component is not considered.

42

Rm

Medium roots
Write “TRUE” if medium roots are considered in the output;

Write “FALSE” if this component is not considered.

43

Stump
Write “TRUE” if stump is considered in the output;

Write “FALSE” if this component is not considered.

a4

Trunk-underbark
Write “TRUE” if trunk-underbark is considered in the output;

Write “FALSE” if this component is not considered.

FALSE

a5

Fruits
Write “TRUE” if fruits are considered in the output;

Write “FALSE” if this component is not considered.

46

ID_Species

Identification number of the species.

Each species has its own ID, two different species cannot have the same ID. Write “1” when the

allometric equation does not refer to any particular species.

450

a7

Genus

It is the name of the genus in the binomial literature in a Latin grammatical forms.

Anogeissus
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48  Species It is the name of the species in the binomial literature in the Latin grammatical form. leiocarpa
49  Family It is the name of the Taxonomic family to which belongs the species
50 Group_Species Write “1” when an allometric eq. refers to a group of species. 1
Write “None” when the equation does not refer to any group of species.
Always provide a separate list Group_Species you used in the database, each one with the
corresponding ID.
51 ID_Group Identification number of the group species. -
Each group has its own ID, two different groups cannot have the same ID.
Write “None” when the equation does not refer to any group of species.
52 Equation It is the allometric equation. 3.21*X+11.74*X1(2)
53 Sample_size Number of plants measured to obtain the equation. 32
Write “None” where there is not this data.
54 Top_dob For equations that include a portion of the merchantable stem. Top d.o.b. describes the minimum -
diameter in cm, outside bark (d.o.b.) of the top of the merchantable stem.
Write “None” where there is not this data.
55  Stump_height For equations that predict the biomass of any component that includes the tree stem or the stump, -
this variable lists (in m.) the estimated or measured stump height.
Write “None” where there is not this data.
56 ID_REF Identification number of the reference. 579
One reference can correspond to more than one equation. In the case one equation is found in more
than one document, the oldest document becomes the reference
57 Label Identification number of the pdf/word copy of the article in your library. 3832

Hard or soft copies are identified with one label number. One label can correspond to more than one
equation. The label can correspond to the ID_REF.
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58 Author

Author’s surname.

Write only the first two authors. If there are two authors use “and” between the names of the two
authors. If more than two authors, write “surname of the first author et al.”.

Sawadogo et al.

59 Year

Year of publication of the document. When an author has written more than one work in the same
year, use a, b, etc. to differentiate, e.g. 2000a, 2000b.

Write “None” where there is not this data.

2010

60 Reference

Authors, year of publication, title of issue, journal, volume number, number of the issue, pages . The
reference should be entered in using the Fao bibliography editorial guidelines (look at page 24 for
more information).

Barney, R., Van Cleve, K. &
Schlentner, R. 1978. Biomass
Distribution and Crown
Characteristics in Two Alaskan
Picea Mariana Ecosystems; .
Canadian Journal of Forest
Research (8): 36-41

1 R? Coefficient of determination of the equation. 0.878
Write “None” where there is not this data.
62 RZ2_adjusted This is an adjustment of the R-squared that penalizes the addition of extraneous predictors to the 0.489

model. Adjusted R-squared is computed using the formula 1 - ((1-R?)((N-1) /( N - k - 1)) where k is the

number of predictors.

63 Corrected for bias

A “1” value in this column means that the original author developed and reported a correction factor

to compensate for the potential underestimation resulting from backtransforming logarithmic

predictions to arithmetic units, as suggested by Baskerville (1972), Beauchamp and Olson (1973), and

Sprugel (1983). In many cases where (7) is “yes,” item (8) will list CF, the bias correction factor to be
used. In other cases, the

authors embedded the correction factor into the equation parameters, or did not publish the value of

CF since it can be obtained from the regression statistics. In such cases, the value of CF in the database

will be zero even though the authors used the correction factor (Jennifer C. 2004).

Write “None” when there is no “corrected for bias”.
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64 RMSE Root-mean-square deviation or error of the equation. -
Write “None” where there is not this data.

65 SEE Standard error of the mean of the equation. -
Write “None” where there is not this data.

66  Bias correction (CF) Value of CF, to correct for potential underestimation resulting from back-transformation of logarithmic -
predictions to arithmetic units.

Write “None” when there is no “CF”.

67 Ratio equation Some authors present methods for predicting the biomass of the merchantable stem to a user-defined -
top diameter. A “1” value in this column means that a separate ratio equation was presented by this
author.

Write “None” when there is no “ratio equation”.

68 Segmented equation Paired equations for the same species. E.g. one -
equation was applicable at the lower end of the diameter range and a second equation was applicable
at the upper end of the range. A “1” value in this column means that the equation is one-half of a
segmented equation.

Write “None” when there is not this data.

69 Contributor Name of the institution who worked on entering data in the database. FAO

70 Name_operator Name of the operator who entered the data

71  Remarks Any other relevant information such as silvicultural treatment, fertility class, soil description etc. Evergreen forest

NOTES
a.  Veryimportant data
b.  Data obtained with other software
c.  Data obtained from pre-existing database
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Appendix 3. Additional allometric equations to De Jong et al.’s (2009a) original

compilation.

Equation Species or vegetation type Reference
B =(0.0841*d13012.41) Tropical deciduous forest Navar 2009
B =(0.1229%d130/2.3964) Juniperus sp Navar 2010a

B =(0.0173*d130/2.3824) Pinus sp Silva-Arredondo and Névar. 2009

B =(0.1192*d130/2.3231) Pinus sp Silva-Arredondo and Navar. 2009

B =(0.1229*d130/2.3964) Pinus sp Navar 2010a

B =(0.1229*d130/2.3964) Pseudotsuga sp Navar 2010a

B =(0.004*d13073.0799) Quercus sp Silva-Arredondo and Navar. 2009

B =(0.010702*d130/3.05082) Quercus sp Rodriguez-Laguna et al. 2009

B =(0.038424*d13072.82139) Quercus sp Rodriguez-Laguna et al. 2009

B =(0.0706*d130/2.4077) Quercus sp Silva-Arredondo and Navar. 2009

B =(0.089*d13072.5226) Quercus sp Navar 2010a

B =(0.45534*d130"2) Quercus sp (Aguirre-Calderdn and Jiménez-Pérez.,2011 )

B =(0.0713*d130/2.5104)

Abies religiosa

Avendafio et al. 2009

B =(0.1229*d130/2.3964)

Abies religiosa

Navar 2010a

B = (0.479403*d130/2.0884)

Brosimum alicastrum

Rodriguez-Laguna et al. 2009

B = (0.064808*d130"2.46998)

Bursera simaruba

Rodriguez-Laguna et al. 2009

B =(0.311733*d130"2.04754)

Ceanothus caeruleus

Rodriguez-Laguna et al. 2008

B =(0.4632%d130/1.8168)

Clethra mexicana

(Acosta M., et al.,2011)

B =(0.037241*d130"2.99585)

Dendropanax arboreus

Rodriguez-Laguna et al. 2008

B =(0.232435%d130"2.21906)

Guazuma ulmifolia

Rodriguez-Laguna et al. 2008

B =(0.209142*d13071.698)

Juniperus flaccida

Rodriguez-Laguna et al. 2009

B = (0.23855*d13011.92242)

Mimosa albida

Rodriguez-Laguna et al. 2008

B = (1.30454*d13011.73099)

Pinus montezumae

Rodriguez-Laguna et al. 2009

B =(0.128495*d130"2.36444)

Pinus pseudostrobus

Rodriguez-Laguna et al. 2009

B = (0.35179*d13012)

Pinus pseudostrobus

Aguirre and Jiménez 2011

B =(0.032495*d130"2.76658)

Pinus teocote

Rodriguez-Laguna et al. 2009

B =(0.40196*d13072)

Pinus teocote

Aguirre and Jiménez 2011

B =(0.064066*d130"2.62323)

Piscidia piscipula

Rodriguez-Laguna et al. 2008

B =(0.246689*d130"2.24992)

Psidium guajava

Rodriguez-Laguna et al. 2008
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B =(0.892617*d130/11.84697) Quercus germana Rodriguez-Laguna et al. 2009
B =(0.970526*d13071.83733) Quercus rysophylla Rodriguez-Laguna et al. 2009
B =(0.132193*d13072.49568) Ternstroemia sylvatica Rodriguez-Laguna et al. 2009
B =(0.130169*d13072.34924) Trichilia havanensis Rodriguez-Laguna et al. 2008
B =(0.346847*d13071.99059) Wimmeria concolor Rodriguez-Laguna et al. 2009
B =(1.16935*d130"1.698) Clethra pringlei Rodriguez-Laguna et al. 2009
B =(0.407073*d13072.02617) Pinus patula Rodriguez-Laguna et al. 2009
B =(0.0345*d130/2.9334) Quercus magnoliifolia Gomez Dias et al. 2011
B =(0.766406*d130"1.93843) Quercus xalapensis Rodriguez-Laguna et al. 2009
B =(0.1649*d130/2.2755) Alnus acuminata Acosta et al. 2011
B =(0.197575*d13072.34002) Bauhinia divaricata Rodriguez-Laguna et al. 2008
B =(0.222776*d13072.33953) Cinnamomum tampicense Rodriguez-Laguna et al. 2008
B =(0.401524*d130"1.83808) Harpalyce arborescens Rodriguez-Laguna et al. 2008
B =(0.182197*d130"2.22818) Nicotiana glauca Rodriguez-Laguna et al. 2008
B =(0.062394*d130"2.71448) Aphananthe monoica Rodriguez-Laguna et al. 2008
B =(0.181077*d13072.29418) Cestrum dumetorum Rodriguez-Laguna et al. 2008
B =(0.078545*d13072.58952) Casimiroa greggii Rodriguez-Laguna et al. 2008
B =(0.23736*d13012.16175) Robinsonella discolor Rodriguez-Laguna et al. 2008
B =(0.048454*d130"2.58164) Tilia americana Rodriguez-Laguna et al. 2008
B = (Exp(-3.182)*d130/2.702) Pinus teocote Navar 2010b
B = (Exp(-3.532)*d130/2.731) Pinus durangensis Navar 2010b
B = (Exp(-3.416)*d130/2.715) Pinus durangensis Navar 2010b
B = (Exp(-2.108)*d130/2.373) Pinus durangensis Navar 2010b
B = (Exp(-2.084)*d13072.323) Pinus durangensis Navar 2010b
B = (Exp(-3.573)*d130/2.746) Pinus arizonica Navar 2010b
B = (Exp(-1.482)*d130/2.129) Pinus arizonica Navar 2010b
B = (Exp(-0.877)*d130/1.98) Pinus arizonica Navar 2010b
B = (Exp(-3.264)*d130/2.707) Pinus arizonica var. Navar 2010b

cooperi
B = (Exp(-1.922)*d13072.321) Pinus arizonica var. Navar 2010b

cooperi
B = (Exp(-3.065)*d13012.625) Pinus oocarpa Navar 2010b
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B = (Exp(-2.611)*d130/2.531) Pinus pseudostrobus Navar 2010b
B = (Exp(0.685)*Ht"1.218) Yucca sp Navar 2010b
B = (Exp(-3.066)*d130/2.646) Pinus ayacahuite Navar 2010b
B = (Exp(-3.549)*d13012.787) Pinus leiophylla Navar 2010b
B = (Exp(-3.039)*d130/2.523) Pinus leiophylla Navar 2010b
B = (Exp(-2.874)*d130"2.631) Quercus sp Navar 2010b
B = (Exp(-2.754)*d130/2.574) Quercus sp Navar 2010b
B = (Exp(-2.144)*d130/2.403) Quercus sp Navar 2010b
B = (Exp(0.685)*Ht"1.218) Bosque de pino Navar 2010a
B = (Exp(-2.818)*d130/2.574) Pinus sp Navar 2010b
B = (Exp(-2.523)*d13072.437) Oak-pine forest Navar 2010b
B = (Exp(-2.592)*d130/2.585) Quercus sideroxyla Navar 2010b
B =(5338.61 + (18.635*d13072*Ht)) Pinus patula (Aguirre-Salado, et al.,2009)
B =(5.338 + (0.018635*d130/2*Ht)) Pinus patula Figueroa-Navarro et al 2010

B = (107-0.8092*(1*AB130*Ht)"0.8247)

Caesalpinia coriaria

Martinez-Yrizar,et al.. 1992

B = (Exp(-2.4099)*d130"1)

Tropical wet forest

Brown et al. 1989

B = (Exp(-3.1141)*(d13072*Ht*1)"0.9719*1)

Tropical moist forest

Brown et al. 1989

B =(34.4703+-
8.0671*d130+0.6589*d13072+0*d130"2*d130 )

Tropical deciduous forests

Brown et al. 1989

B = (11.509+-3.1229*d130+0.31*d13072+0.0004*d130"2*Ht
)

Pinus arizonica var.

cooperi

Pimienta et al. 2007

B = (22.3476+-
4,947%d130+0.4911*d13072+0.0039*d130/2*Ht )

Pinus arizonica var.

cooperi

Pimienta et al. 2007

B = (2543.05*Exp(-56.209/d130) + 1.3)

Pinus teocote

Dominguez et al. 2008

B =(2354.14*Exp(-57.453/d130) + 1.3) Pinus pseudostrobus Dominguez et al. 2008
B =(29.4408*Exp(-26.519/d130) + 0) Pinus patula Aguirre-Salgado et al. 2009
B = (4371.4*Exp(-70.972/d130) + 1.3) Quercus sp Dominguez et al. 2008

B = (P * Exp(-1.499 + 2.148*In(d130)+ 0.207*In(d130)"2 + -
0.0281*In(d130)"3))

Tropical evergreen forests

Chave et al. 2005

B = (P * Exp(-1.349 + 1.98*In(d130)+ 0.207*In(d130)"2 + -
0.0281%*In(d130)"3 ))

Mangrove

Chave et al. 2005

B = (P * Exp(-0.667 + 1.784*In(d130)+ 0.207*In(d130)A2 + -
0.0281*In(d130)"3 ))

Tropical deciduous forests

Chave et al. 2005

B = (0.5+ ( (25000 * d130/2.5) / ( d1302.5 + 246872) ))

Conifer forests

IPCC default equations
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B =(0.887+ ( (10486 * d13072.84) / ( d130/2.84 + 376907) ))

Oak-pine forest

IPCC default equations

B =(0.0551 * (d130 * Ht) ~1.3895)

Pinus maximinoi

Gonzales Zérate 2008
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