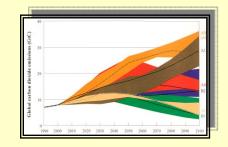


Expert Meeting on a Strategy for REDD Scenarios


Joseph Alcamo, UNEP


Nairobi

20-21 September 2011

- How can scenario analysis help make the REDD+ Programme a success throughout the world?
 - 1. At the global level, how can scenarios support the progress of REDD+?
 - 2. How can scenarios help stakeholders plan a REDD+ programme?
 - 3. How can scenarios help stakeholders analyze/visualize the benefits and impacts of a REDD+ programme in a country?
- What are sketches of possible scenario projects in the Democratic Republic of Congo, Ecuador and other countries?
- How can scenario analysis help UNEP fulfill its mission to keep the global environment in review and present options for achieving sustainable development and the green economy?

UNEP Science Strategy

Goal 2. Sustainability Scenarios

Designing the Future:

UNEP makes a major effort to develop "solution-oriented, sustainability" scenarios.

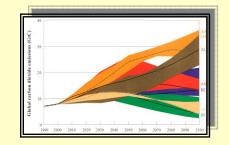
Priority Actions

- 2.1 Build sustainability scenarios in UNEP projects
- 2.2 Build sustainability scenarios in member states
- 2.3 Institutionalize scenario building at UNEP

The Story and Simulation (SAS) Approach Applied to Water in the Jordan River Valley

Expert Meeting on a Strategy for REDD Scenarios

Joseph Alcamo, UNEP


Nairobi

20-21 September 2011

What are Scenarios?

A plausible description of how the future may unfold based on 'if-then' propositions. A typical scenario includes a representation of the initial situation and a sequence of events that describe the key driving forces and the changes that lead to an image of the future.

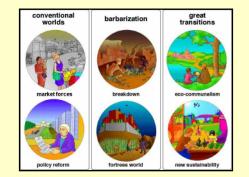
What they are not: Extrapolations, predictions

What is Scenario Analysis?

Procedure: based on the <u>development</u> of scenarios, a <u>comparison</u> of scenario results, and an <u>evaluation</u> of their consequences.

Goal: anticipate future developments of society and the environment, and to evaluate strategies for responding to these developments. A key idea is to explore alternative future developments.

Deductive $\leftarrow \rightarrow$ Inductive Exploratory $\leftarrow \rightarrow$ Anticipatory (Normative) Qualitative $\leftarrow \rightarrow$ Quantitative


Qualitative $\leftarrow \rightarrow$ Quantitative

Qualitative Scenarios

In form of:

- visual symbols: diagrams; pictures
- words: written phrases, outlines

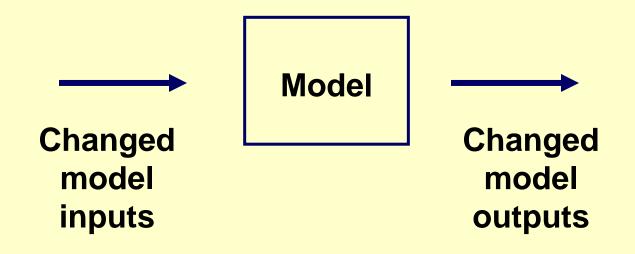
Most common form:

Storylines – Narrative description of scenario, highlighting main features, and relationship between driving forces and main features.

(Excerpt of "Modest Hopes" Storyline from GLOWA-Jordan Scenario Study)

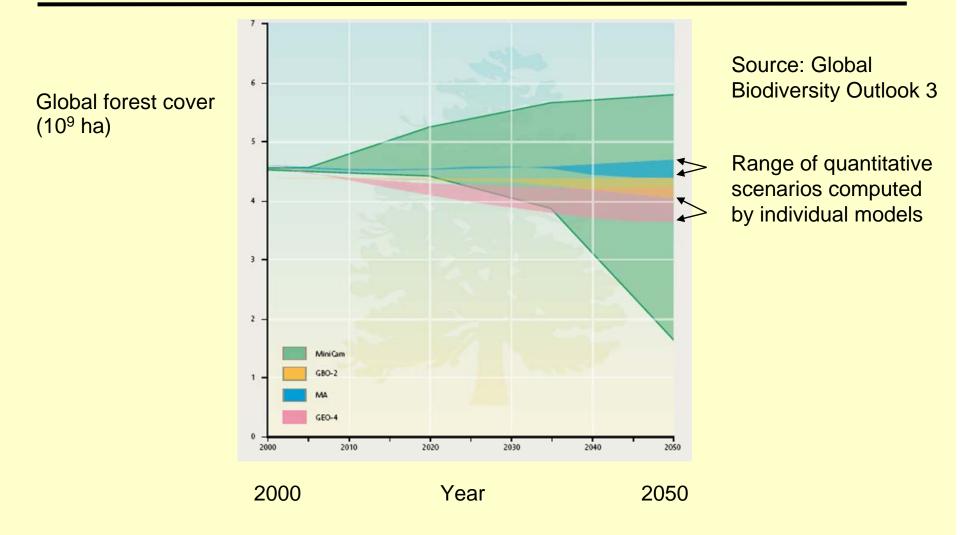
"Cease-fire in Gaza and West Bank"

The positive atmosphere caused by the revived peace process, together with the challenge of coping with water-related catastrophes, finally leads to a measure of cooperation between states in the region. One of the first signs ... is that regional governments ... agree to a modification of some water allocations between states ...


"NETAFIM opens branches in Gaza and Nablus"

... A new factory for constructing buildings is opened in Tulkarem and the Israeli producer of state-of-the-art irrigation systems (NETAFIM) opens branches in Gaza and Nablus. Ten thousand work permits are issued by Israel for Palestinians.

Quantitative Scenarios


- Numerical information
- Commonly computed with models

Quantitative Scenarios

Scenarios of global forest loss up to 2050

Qualitative Scenarios

Advantages: Understandable, interesting; represent views and complexity of many different interests.

Disadvantages: Arbitrary, tough to identify or test underlying assumptions; do not provide numerical information.

Quantitative Scenarios

Advantages: "Scientific" (based on models); Numerical information; can identify underlying assumptions.

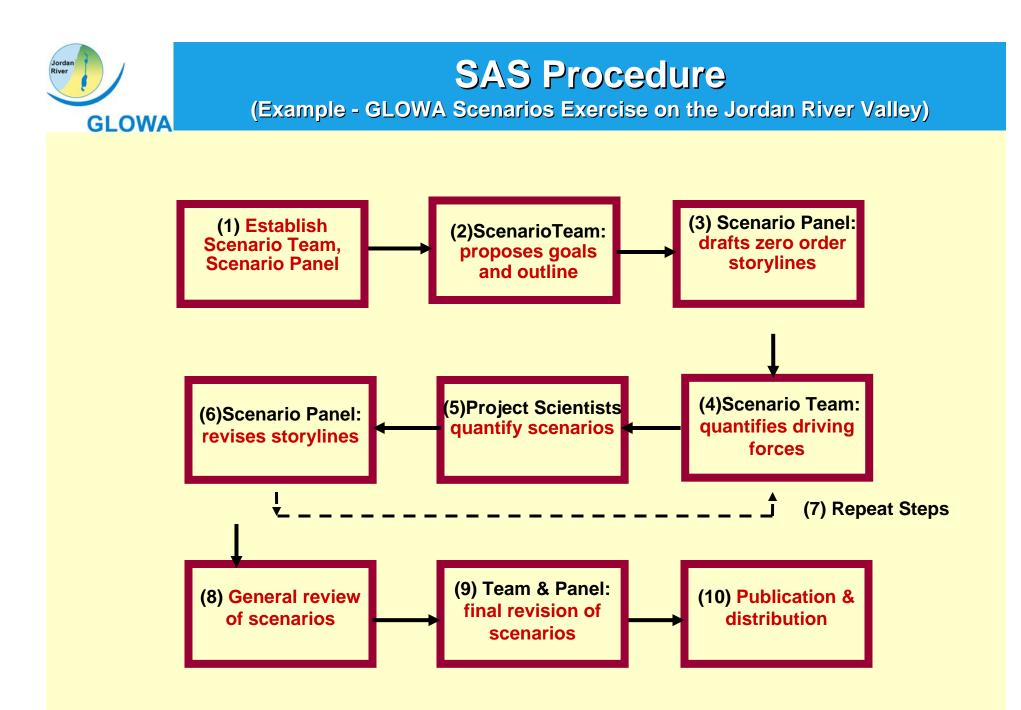
Disadvantages: Models have limited view of the world and are often not transparent; exactness gives illusion of certainty.

Having it all: The Story and Simulation (SAS) Approach

A type of scenario analysis ...

- ... that produces both **qualitative** information (storylines) and **quantitative** information (model calculations) and combines their advantages
- ... is an **iterative process** engaging both stakeholders and environmental modelers

SAS-type scenario studies:


IPCC (emission scenarios); Millennium Ecosystem Assessment; UNEP Global Environmental Outlook – 4; World Water Commission, Glowa-Jordan River Project

Scenario Panel: Stakeholders. Representatives from water & agriculture ministries of Israel, Jordan, and Palestinian Authority; NGOs; scientific advisors. → Develop qualitative scenarios ("storylines").

Scenario Team: Scientists + consultants \rightarrow Facilitate and coordinate scenario exercise.

Project Scientists: Partners from scientific sub-projects \rightarrow "Quantify" scenarios (with modeling and other analyses)

Advantages/Disadvantages SAS Approach

Disadvantages of SAS

- 1. Resource-intensive, time-consuming, expensive
- 2. Requires good moderators, computer models
- 3. Linkage between qualitative & quantitative difficult

Advantages of SAS

- 1. An "open" approach \rightarrow Stakeholders are involved in core activities, interested parties can comment on and contribute to the scenarios
- An *iterative process* → Enhances involvement & interaction between writers, experts, modelers, & stakeholders
- 3. Combines advantages of qualitative (understandable, complex dimensions) and quantitative scenarios (consistency check, provides quantitative data, published).

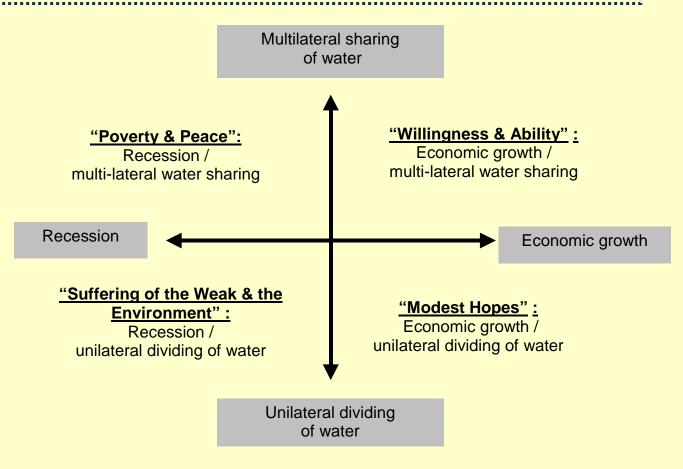
GLOWA – Jordan River

Case Study:

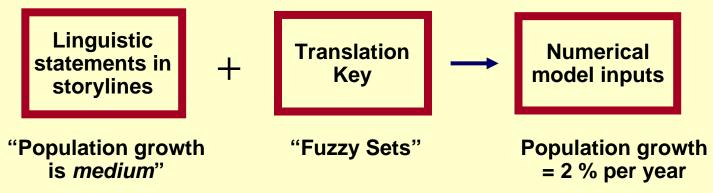
The SAS Approach: The GLOWA-Jordan scenario analysis

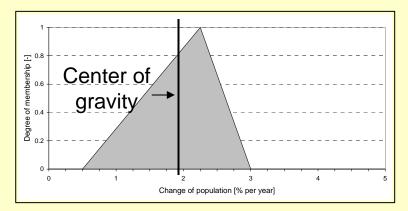
<u>Goals</u>

- Provide new knowledge about impacts of global & regional change on water resources in the region
- Explore new ideas on adapting to changes through sustainable water management
- Engage Israelis, Jordanians and Palestinians



Qualitative scenarios: Comprehensive storylines of regional development under global change





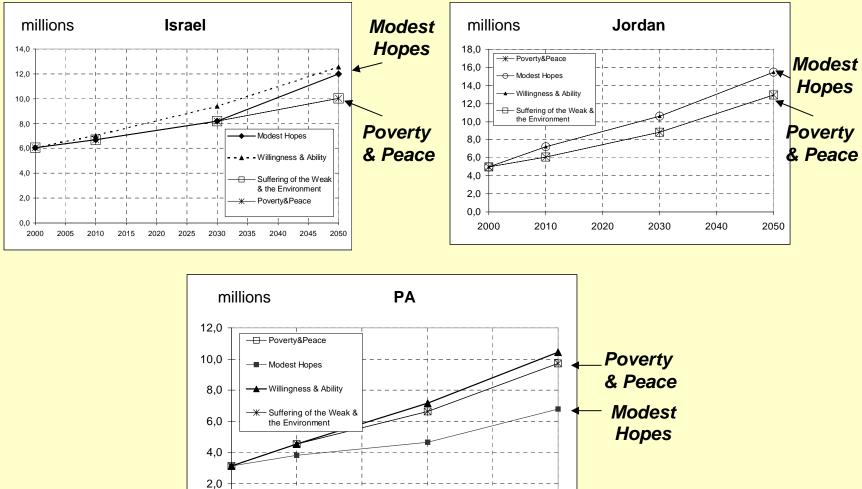
Linking qualitative and quantitative scenarios

Going from Storylines to Models

"Fuzzy membership function"

Objective translation: linguistic statement "medium increase of population" \rightarrow model input

Going from Storylines to Models


GLOWA Jordan River Valley Scenarios Population Growth – "Modest Hope" Scenario

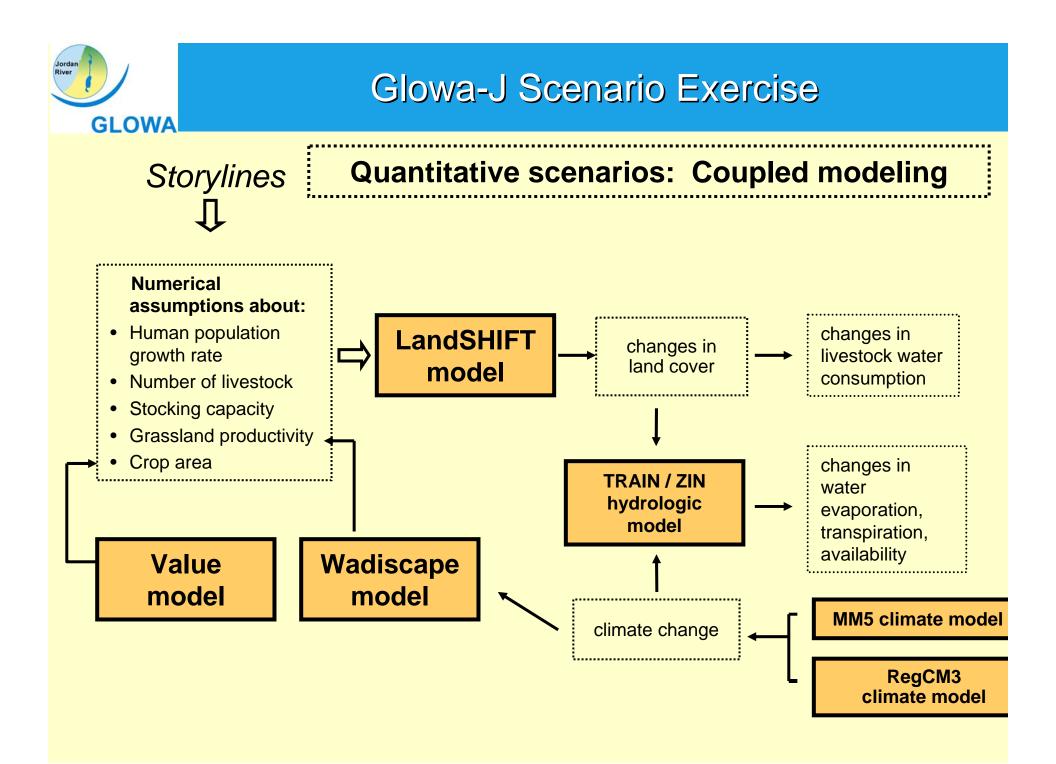
		Rate of Change of Population	
Scenario period	State	Storyline	Model Input (% per annum)
2008-2010	Israel	"Small increase"	1
	Jordan	"Medium increase"	1.9
	Palestine	"High increase"	3.7
2025-2030	Israel	"Small increase"	1
	Jordan	"Medium increase"	1.9
	Palestine	"High increase"	3.7
2050	Israel	"Small increase"	1
	Jordan	"Medium increase"	1.9
	Palestine	"High increase"	3.7

Driving Forces of Change:

Population

2030

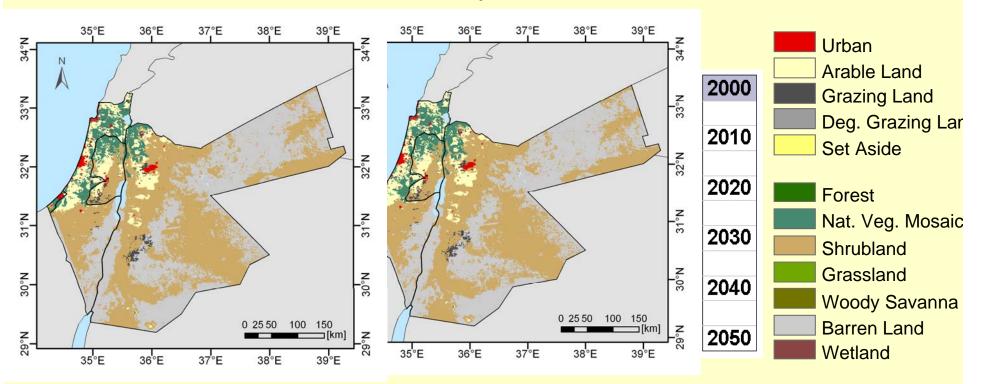
2040


2050

Source: Stakeholders, Glowa-J scenario exercise (2007)

2010

2020


plausibility

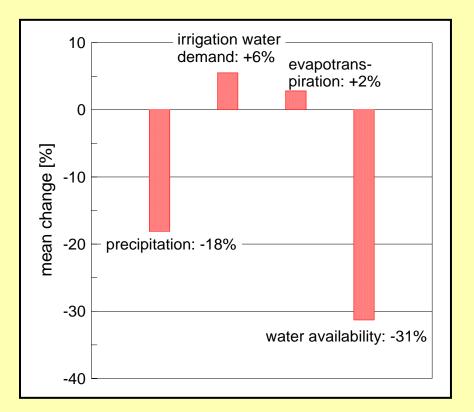
Land Use Scenarios

Modest Hopes

Poverty and Peace

Source: Koch & Schaldach,

Land Use/Land Cover 2000-2050 LandSHIFT Model Simulation

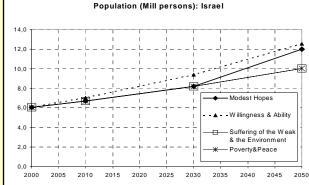

Regional Water Balance

Change in water balance Lower Jordan Valley

Under land cover change and climate change (A1b scenario) Up to 2041-2050

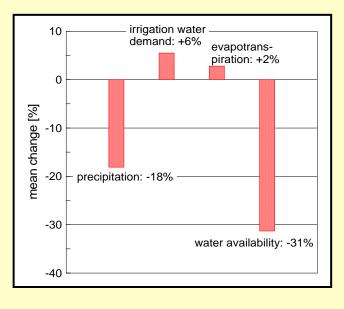
Water balance: TRAIN model (Menzel)

Climate change calculations with ECHAM5 & RegCM3 models (Alpert, Krichak, Kunin)


Result: Scenarios with consistent qualitative (storylines) & quantitative (model calculations) details \rightarrow basis for testing management options

Wetland

Multilateral sharing of water "Poverty & Peace": "Willingness & Ability" : Economic growth / Recession / multi-lateral water sharing multi-lateral water sharing Recession Economic growth "Suffering of the Weak & the "Modest Hopes" : Environment" : Economic growth, Recession / unilateral dividing of water unilateral dividing of water Unilateral dividing of water Urban Vegetables/Fruits/Crops Other Crops 2000 Quant-Grazing Land 2010 Deg. Grazing Land itative Set Aside 2020 outputs: 2030 Forest e.g. Nat. Veg. Mosaic Land use 2040 Shrubland & cover Grassland 2050 Woody Savanna Barren Land


36'F

Storylines 2005-2050



Quantified drivers: e.g. population

Quantitative outputs: e.g. changing water balance Lower Jordan

Possible Applications of Scenario Analysis to REDD+

1. How can scenarios support the progress of REDD+ ?

Qualitative scenarios show how REDD+ 'financing' and infrastructure investments can contribute to delivering multiple benefits for climate, development and conservation

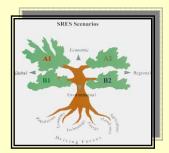
- 2. How can scenarios help stakeholders plan a REDD+ programme ? Develop qualitative scenarios to envision institutional steps for planning and implementing a REDD+ programme in a country.
- 3. How scenarios could help stakeholders analyze/visualize the benefits and impacts of a REDD+ program in a country:

Develop qualitative/quantitative scenarios of future land use change, reduced deforestation, afforestation, and uptake of carbon in a country resulting from future REDD+ programmes. (Storylines + modeling analysis)

Conclusions

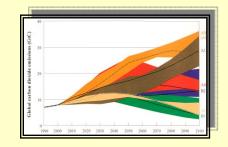
Scenario analysis – Versatile tool to imagine the future; an aid to managing complex problems of the environment

- Many different types of scenarios qualitative and/or quantitative scenarios depending on need
- Scenarios can enhance the strategic thinking and planning in UN-REDD+ Programme.



Expert Meeting on a Strategy for REDD Scenarios


Joseph Alcamo, UNEP


Nairobi

20-21 September 2011

