

Forest Carbon Dynamics

Rasmus Astrup

Contents

- > Background: Carbon in forests
- > Carbon Dynamics
 - > Stand level dynamics
 - > Forest level dynamics
 - > Effect of forest management, deforestation and degradation

> Summary

The basics: Photosynthesis & Decomposition

Photosynthesis: Plants take up atmospheric CO₂ that is stored as biomass

Natural decomposition (or combustion) of biomass release CO_2 back to the atmosphere

The basics: Carbon pools

- > Living biomass
 - > Photosynthesis take up CO₂
- > Dead organic matter
 - > Input from live biomass
 - > Decompose and release CO₂
- > Soil carbon
 - > Input from dead organic matter
 - > Decompose and release CO₂

How can forests be used to mitigate climate change?

Cancun (COP 16) and forest!

- "70. Encourages developing Parties to contribute to mitigation actions in the forestry sector by undertaking the following activities, as deemed appropriate by each Party and in accordance with their respective capabilities and national circumstances:
 - i. Reduce emissions from deforestation
 - ii. Reduce emissions from forest degradation
 - iii. Conservation of forest carbon stock
 - iv. Sustainable forest management
 - v. Enhancement of forest carbon stocks"

Stand-level carbon dynamics

Stand-level carbon pool dynamics

- Stand replacing disturbance

Forest Management and CO₂ in the Atmosphere

Forest Management and CO₂ in the Atmosphere

Tid

Forest-level carbon dynamics

- > REDD+ is on the national forest level not the stand level
- > The forest is the sum of all the stands
- > REDD+ and international climate agreements have a relatively short time horizon
- > The overall forest carbon stock change is strongly related to the start condition

Stand-level stock change

The Age class effect

> Old natural forest

- > high stock
- > stock change ~ 0

Typical for large forest areas in REDD+ countries

The Age class effect

> Young forest

- > low carbon stock but
- > high stock change

> Typical for previously over-harvested forest (Norway!)

The Forest Age Class Effect

- > The "classic" managed forest equal area in each ageclass
 - > Harvest equal increment
 - > Stock change ~ 0

Link to MRV

- > How about we just monitor carbon stock change without any other consideration
 - > Managed forest and protected forests can have same stock change – depending on the age class distribution!
 - > Forests with large amount of degradation can theoretically have a positive stock change if large areas are in the intermediate age!

Link to reference level for forest carbon stock change

> Kyoto Tier 1 countries must produce reference scenarios that remove the age class effect for a future second commitment period

> REDD+ is not quite there yet as focus has been on reference levels for

Summary

- It is important to understand the basics of carbon dynamics to understand the possibilities of forest to mitigate climate change
- > Important to look at different scales (stand versus forest)
- > Same short-term forest carbon stock change can occur from different forest management regimes

