USING GIS TO HELP INTEGRATE BIODIVERSITY AND ECOSYTEM SERVICES INTO REDD+ DECISION MAKING

STEP-BY-STEP TUTORIAL V1.0: EVALUATING THE IMPORTANCE OF FORESTS FOR SOIL STABILIZATION AND LIMITING SOIL EROSION, A SIMPLE APPROACH USING A CUSTOMISED TOOL IN ARCGIS 10.0

The UN-REDD Programme is the United Nations Collaborative initiative on Reducing Emissions from Deforestation and forest Degradation (REDD) in developing countries. The Programme was launched in September 2008 to assist developing countries prepare and implement national REDD+ strategies, and builds on the convening power and expertise of the Food and Agriculture Organization of the United Nations (FAO), the United Nations Development Programme (UNDP) and the United Nations Environment Programme (UNEP).

The United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment centre of the United Nations Environment Programme (UNEP), the world's foremost intergovernmental environmental organisation. The Centre has been in operation for over 30 years, combining scientific research with practical policy advice.

Prepared by Corinna Ravilious, Paulus Maukonen, Julia Thorley and Arnold van Soesbergen

Copyright: UNEP

Copyright release: This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement to the source is made. Re-use of any figures is subject to permission from the original rights holders. No use of this publication may be made for resale or any other commercial purpose without permission in writing from UNEP. Applications for permission, with a statement of purpose and extent of reproduction, should be sent to the Director, UNEP-WCMC, 219 Huntingdon Road, Cambridge, CB3 0DL, UK.

Disclaimer: The contents of this report do not necessarily reflect the views or policies of UNEP, contributory organisations or editors. The designations employed and the presentations of material in this report do not imply the expression of any opinion whatsoever on the part of UNEP or contributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries or the designation of its name, frontiers or boundaries. The mention of a commercial entity or product in this publication does not imply endorsement by UNEP.

We welcome comments on any errors or issues. Should readers wish to comment on this document, they are encouraged to get in touch via: <u>ccb@unep-wcmc.org</u>.

Citation: Thorley, J. and Ravilious, C. (2015) Using GIS to help integrate biodiversity and ecosystem services into REDD+ decision making. Step-by-step tutorial v1.0: Evaluating the importance of forests for soil stabilization and limiting soil erosion, a simple approach using a customized tool in ArcGIS 10.0. Prepared on behalf of the UN-REDD Programme. UNEP World Conservation Monitoring Centre, Cambridge, UK.

Acknowledgements: These training materials have been produced from materials generated for working sessions held in various countries to aid the production of multiple benefits maps to inform REDD+ planning and safeguards policies using open source GIS software.

Contents

1.	Introd	uction1
2.	Data R	equirements2
3.	Runnir	ng the analysis2
	3.1	Tool SE a: Mosaic DEM tiles, project to units meters and generate slope
	3.2	Tool SE b: Reclassify Slope Raster from step a5
	3.3	Tool SE c: Batch clip monthly precipitation rasters
	3.4	Tool SE d: Calculate annual mean precipitation from step c7
	3.5	Tool SE e: Reclassify Precipitation Raster from step d9
	3.6	Tool SE f: Fill DEM from step a and generate hydrological datasets10
	3.7	Tool SE h1: Convert Dam points and Lake polygons to raster (Dams and Lakes)11
	3.8	RECLASSIFY points and use the EXPAND tool in ArcGIS Spatial Analyst to ensure the dam
		points overlay the stream flow network correctly14
	3.9	Tool SE i1: Generates upstream catchments of dams AND water bodies from step 815
	3.10	Tool SE j: Reclassify upstream catchments from step i17
	3.11	Tool SE k: Sum outputs from b, e, and j and clip to forest extent
	3.12	Example maps for illustrating the stages of the mapping process for Panama20

1. Introduction

Reducing Emissions from Deforestation and Forest Degradation (REDD) is an effort to create a financial value for the carbon stored in forests, offering incentives for developing countries to reduce emissions from forested lands and invest in low-carbon paths to sustainable development. "REDD+" goes beyond deforestation and forest degradation, to include the role of conservation, sustainable management of forests and enhancement of forest carbon stocks. This will involve changing the ways in which forests are used and managed, and may require many different actions, such as protecting forests from fire or illegal logging or rehabilitating degraded forest areas.

REDD+ has the potential to deliver multiple benefits beyond carbon. For example, it can promote biodiversity conservation and secure ecosystem services from forests such as water regulation, erosion control and non-timber forest products. Some of the potential benefits from REDD+, such as biodiversity conservation, can be enhanced through identifying areas where REDD+ actions might have the greatest impact using spatial analysis.

This tutorial provides a mapping methodology to evaluate the importance of forests for soil stabilization and limiting soil erosion, using a simple "qualitative" approach. In this example, importance is evaluated as a function of slope, rainfall and the presence of important economic, social and environmental sites downstream that could be adversely affected by soil erosion, such as a dam or water body. For example, forests may play an important role in soil stabilization on steep slopes in areas of high rainfall, with implications for downstream activities that benefit from clear water such as population centres, hydroelectric plants and navigation routes. Such an analysis can be used to help answer questions such as:

• Where is forest loss likely to result in erosion and consequent sedimentation – and where is this important?

• Where might retaining or restoring forest in areas play an important role in retaining soil/reducing sedimentation?

The analysis is undertaken by using an overlay approach, where data on mean precipitation (annual or the average for a subset of particular months if just the wet season is used), slope, and dam catchment are generated and combined with forest data. The process involves generation of single layers with 3 classes (low medium and high) for mean precipitation and for slope. A binary layer is generated for the presence or absence of a dam catchment. These can then be combined additively. Since there are 3 classes for slope (1-3), 3 classes for mean precipitation (1-3) and 2 for the presence or absence of a dam catchment (0-1) the resulting output has a maximum value of 8, and a minimum value of 2, and therefore 7 classes. **These classes represent a low – high potential importance of forests for soil stabilization and limiting soil erosion. Highest values represent higher erosion impact in the absence or degradation of forests.** No weighting is used in this approach – the relative importance of high precipitation is the same as that for steep slopes. This approach could be further refined for example by adding in additional layers such as soil type.

2. Data Requirements

Download **void-filled** hydrosheds DEM data at 3 arc second resolution from <u>http://hydrosheds.cr.usgs.gov/datadownload.php?reqdata=3demg</u>

The 3 arc second data is served in 1-degree tiles, therefore depending on the size of your study area you will probably need more than 1 tile.

A "void-filled" DEM has been modified to fill in areas of no-data (i.e. over large water bodies). The existence of no-data in a DEM causes significant problems for deriving hydrological products, which require continuous flow surfaces. Therefore, a void-filling procedure is applied to provide a continuous DEM for HydroSHEDS. A "conditioned" DEM has had a number of conditioning procedures applied to it (e.g. sink filling, stream burning, deepening of open water surfaces). The conditioning process alters the original DEM and may render it incorrect for applications other than deriving drainage directions.

IMPORTANTwhen using HydroSHEDS data to undertake the analysis described below, a void-filled DEM must be used.

In order to know which tiles to download, look at the tile numbers in the layer package: Hydrosheds_3arc_seconds_grid.lpk. Make sure your area of study is in lat/lon WGS84 and select the tiles for download. Once all the tiles have downloaded, unzip all the files in the folder.

Download WorldClim precipitation data at 30 arc seconds from:

http://www.worldclim.org/current as ESRI grid files. This data is available on large tiles or at global extent. Download for the global precipitation data is around 700MB and consists of 12 global monthly data grids.

Download dams data from: http://sedac.ciesin.columbia.edu/data/set/grand-v1-dams-rev01

The examples above are global datasets. You may have better data available for your area of interest which you can easily use as substitutes for the above

3. Running the analysis

Before running the next steps make sure you have installed the ExploringMultipleBenefits toolbox_v10.tbx (see exploring MultipleBenefits manual for details of installation).

3.1 Tool SE a: Mosaic DEM tiles, project to units meters and generate slope

🛞 🧟 Exploring Multiple Benefits toolbox

This tool undertakes the following steps:

- Stitching DEM tiles for the study area together into a single raster dataset.
- Projecting the raster to a chosen output coordinate system (the dataset cannot be left in geographic EPSG 4326 as the units need to be in meters).
- Calculating slope from the projected raster dataset. Note: The Slope calculations depend on resolution. Steeper slopes are better identified with higher resolution DEMs e.g. 3-arc seconds or less

How to run the tool

- a. Double click on the tool 'Tool SE a: Mosaic DEM tiles, project to units meters and generate slope'
- **b.** In the box which appears (see below), fill in the white boxes (parameters) accordingly. When each white box is clicked on, explanations/help will appear in the panel on the right. The parameter descriptions are also described below.

💬 Tool SE a: Mosaic DEM tiles, project to units meters and generate slope

Input Rasters		Tool SE a: Mosaic DEM tiles, project to units meters and generate slope This tool takesDEM tiles and mosaics them together to produce one output DEM raster.This output raster is projected and used to calculate slope.
Mosaic Raster Dataset Name with Extension Output Coordinate System Geographic Transformation (optional)		
	 ▲ × ▲ 	
Output Cell Size outputworkspace	•	
OutputName Output measurement DEGREE OutputSlope		

Parameter descriptions

Parameter	Explanation	Data Type
<input_rasters></input_rasters>	Input DEM rasters	Multiple Value
<mosaic dataset="" name<br="" raster="">with Extension></mosaic>	The output name for the mosaic DEM raster with file extension (use the same extension as your input rasters, e.gtif)	String
<output_coordinate_system></output_coordinate_system>	Output coordinate system for the new projected raster	Coordinate System
<geographic_transformation (Optional)></geographic_transformation 	select from dropdown, some projections require this	Multiple Value
<output_cell_size></output_cell_size>	Set the output cell size to be consistent with the resolution of your input DEM rasters	Analysis cell size
<outputworkspace></outputworkspace>	Workspace in which to save the output	Workspace or Raster Catalog
<outputname></outputname>	Name of new projected raster	Any value
<output measurement=""></output>	The slope can be calculated as a percentage or degrees	String
<outputslope></outputslope>	Name of new output slope raster	Anyvalue

3.2 Tool SE b: Reclassify Slope Raster from step a

This tool undertakes the following steps:

• Reclassifies the slope output from 'Tool SE a' into 3 classes

How to run the tool

- a. Shade the slope raster in 3 classes (chose classes to represent low high slope (e.g. 0-15, 15-30, >30 in % or degrees (units chosen in step a)
- b. Double click on the tool 'Tool SE b: Reclassify Slope Raster from step a'
- **c.** In the box which appears (see below), fill in the white boxes (parameters) accordingly. *Note: Once the input slope raster is selected, ArcMap will guess that the reclassification is the same as the 3 class shading you chose above.*
- d. Click OK to run the tool

pa Tool SE b: Reclassify Slope Raster from step a	-	
Input raster	- <u></u>	Tool SE b: Reclassify Slope Raster from step a
 Reclass field 		
De de seife stien	-	This tool reclassfies the slope
Old values New values Classify Unique E Add Entry Delete Entries Values Precision		laster output nom step a.
Change missing values to NoData (optional)		
outputworkspace		
OutputName		
	2	
OK Cancel Environments	<< Hide Help	Tool Help

Parameter descriptions

Parameter	Explanation	Data Type
<input_raster></input_raster>	Slope calculation raster from step a	Composite Geodataset
<reclass field=""></reclass>	The field upon which the reclass will be based - i.e. the degrees or percentage value of the slope	Field
<reclassification></reclassification>	Reclass slope values into 3 classes	Remap
<change_missing_values_to_no Data (Optional)></change_missing_values_to_no 	Leave blank as all values are reclassed	Boolean
<outputworkspace></outputworkspace>	Workspace in which to save the output	Workspace
<outputname></outputname>	Name of new output reclassed slope raster	Any value

3.3 Tool SE c: Batch clip monthly precipitation rasters

	ArcToolbox	🚇 🧟 Exploring Multiple Benefits toolbox
2.45		

This tool undertakes the following steps:

• Batch clips monthly precipitation rasters to the extent of your study area using a mask of the study region

How to run the tool

- a. Add the monthly grids to Arcmap
- b. <u>Right</u> click on the tool 'Tool SE c: Batch clip monthly precipitation rasters' and click batch
- c. In the box which appears (see below), fill in the white boxes (parameters) accordingly.
- d. Click OK to run the tool

🐉 Tool SE c: Batch clip monthly precipitation rasters	a Contractor Last	
	*	No description available
Input raster Input raster or feature mask data	Output raster	
	T	
	×	
	1	
	Ŧ	
	<u> </u>	
	\checkmark	
	· · · · · · · · · · · · · · · · · · ·	
OK Cancel	Environments	Tool Help

Parameter	descriptions
rarameter	acouptions

Parameter	Explanation	Data Type
<input_raster></input_raster>	input monthly precipitation raster	Composite Geodataset
<input_raster_or_feature_mask _data></input_raster_or_feature_mask 	dataset defining study area	Composite Geodataset
<output_raster></output_raster>	monthly precipitation raster clipped to study area	Raster Dataset

3.4 Tool SE d: Calculate annual mean precipitation from step c

This tool undertakes the following steps:

- Uses the raster calculator tool from the spatial analyst toolbox (map algebra) to create an annual mean grid for precipitation. At this point it is possible to decide whether an annual mean of precipitation will be used in the analysis, or the rainy season months only. E.g. Panama analysis used May – August wet season precipitation only.
- Adds the required months precipitation rasters together, and then divides by the total number of months used.

How to Run the Tool

- a. Double click on the tool 'Tool SE d: Calculate annual mean precipitation from step c'
- **b.** In the box which appears (see below), fill in the white boxes (parameters) accordingly.
- c. Click OK to run the tool

눡 Tool SE d: Calculate annual mean precipitation from step c		x
 Map Algebra expression 7 8 9 / == != & C 4 5 6 * >>= 4 5 6 * >>= 1 2 3 - < <= ^ 0 . + () ~ e outputworkspace OutputWinkspace 	Conditional Con Con Pick SetNull Math Abs Exp Exp Exp Exp Con	e
		-
OK Cancel Environme	ents << Hide Help Tool Help	

Parameter	Explanation	Data Type
<map_algebra_expression></map_algebra_expression>	Add together the clipped precipitation rasters from step c and divide by the total number of months used (i.e. annual average will be 12 input rasters added together / 12)	Raster Calculator Expression
<outputworkspace></outputworkspace>	Workspace in which to save the output	Workspace
<outputname></outputname>	Name of new output average precipitation raster	Any value

Technical diagram

3.5 Tool SE e: Reclassify Precipitation Raster from step d

This tool undertakes the following steps:

• Reclassifies the precipitation output from 'Tool SE d' into 3 classes

How to Run the Tool

- **a.** Shade the precipitation raster in 3 classes to represent low high (e.g. you could use define class breaks using a quantile or equal interval classification)
- b. Double click on the tool Tool SE e: Reclassify Precipitation Raster from step d
- **c.** In the box which appears (see below), fill in the white boxes (parameters) accordingly. *Note: Once the input precipitation raster is selected, ArcMap will guess that the reclassification is the same as the 3 class shading you chose above.*
- **d.** Click OK to run the tool

💬 Tool SE e: Reclassify Precipittion Raster from step d	
Input raster Redass field	Tool SE e: Reclassify Precipittion Raster from step d
Reclassification Old values New values Classify Unique Add Entry Delete Entries Load Save Reverse New Values Precision Change missing values to NoData (optional) output/workspace Output/Vame	This tool reclassifies the average precipitation raster produced in step d.
OK Cancel Environments << Hide Help	Tool Help

Parameter descriptions

Parameter	Explanation	Data Type
<input_raster></input_raster>	precipitation calculation raster from step d	Composite Geodataset
<reclass field=""></reclass>	The field upon which the reclass will be based - i.e. the degrees or percentage value of the slope	Field
<reclassification></reclassification>	Reclass slope values into 3 classes	Remap
<change_missing_values_to_no Data (Optional)></change_missing_values_to_no 	Do not use	Boolean
<outputworkspace></outputworkspace>	Workspace in which to save the output	Workspace
<outputname></outputname>	Name of new output reclassed precipitation raster	Anyvalue

3.6 Tool SE f: Fill DEM from step a and generate hydrological datasets

ArcToolbox	🚇 🧟 Exploring Multiple Benefits toolbox
The second secon	

This tool undertakes the following steps:

- Fill the DEM from step a
- Create flow direction raster from filled DEM
- Create flow accumulation raster from flow direction raster
- Create steam order raster from flow accumulation raster

How to Run the Tool

- a. Double click on the tool 'Tool SE f: Fill DEM from step a and generate hydrological datasets'
- **b.** In the box which appears (see below), fill in the white boxes (parameters) accordingly.
- c. Click OK to run the tool

📴 Tool SE f: Fill DEM from step a and generate hydrological datasets	
Input surface raster	Tool SE f: Fill DEM from step a and generate
FillOutput	hydrological datasets
 FlowDOutput 	This tool fills the projected DEM raster created in step a and
FlowAOutput	accumulation and stream order.
Method of stream ordering (optional)	
SO_Output	
• outputworkspace	*
OK Cancel Environments << Hide Help	Tool Help

Parameter	Explanation	Data Type
Input_surface_raster	Projected DEM raster output file from step a	Composite Geodataset
FillOutput	Name of the new filled DEM output raster	Any value
FlowDOutput	Name of thenewflow direction output raster	Any value
FlowAOutput	Name of the new flow accumulation output raster	Any value
Method_of_stream_ordering (Optional)	Leave as defaulrt i.e. STRAHLER	String
SO_Output	Name of the new stream order output raster	Any value
outputworkspace	Workspace in which to save the output	Workspace

Technical diagram

3.7 Tool SE h1: Convert Dam points and Lake polygons to raster (Dams and Lakes)

This tool undertakes the following steps:

- Convert the dam shapefile to a raster
- Convert the lakes shapefile to a raster
- Dams and lakes mosaicked into single raster

How to Run the Tool

- a. Double click on the tool 'Tool SE h1: Convert Dam points and Lake polygons to raster (Dams and Lakes)'
- **b.** In the box which appears (see below), fill in the white boxes (parameters) accordingly.
- c. Click OK to run the tool

Note: If including only dam catchments in the analysis tool **SE h2: Convert Dam points to Raster (Dams only)** should be used instead.

💬 Tool SE h1: Convert Dam points and Lake polygons to raster (Dams and Lakes)	
Input Dam Features	Tool SE h1: Convert Dam points and Lake polygons to raster
Value held Value held	
● DamRaster	***IMPORTANT***If including both dam and lake catchments in the analysis, this Tool
Snap Raster (Stream Order)	should be usedinstead of Tool SE h2.
Input Lake Features	This tool converts a dam point data file and lake polygon file to a rasterwhich is then
Value field (2)	mosaicked to produce one output file. The dam point data must have been pre-
• Snap Raster (2)	the dam points EXACTLY overlay the
LakeRaster	f). See the accompanying guidance notes in the Toolbox Manual on the editing
Mosaic Raster Dataset Name with Extension	required prior to running this tool.
Pixel Type	
Number of Bands	
Mosaic Operator (optional)	
Output Coordinate System	
outputworkspace	
OK Cancel Environments << Hide Help	Tool Help

Parameter	Explanation	Data Type
Input_Dam_Features	Edited dam point data file	Feature Layer
Value_field	A new field ID must be created in the point dam data file - Having a FID which contains a value 0 will not work to create dam catchments. See accompanying guidance notes in the Toolbox Manual on this step.	Field
DamRaster	The name for the newoutput dam raster	Any value
Snap_RasterStream_Order_	Set the snap raster to be the stream order raster output created in step f	Raster Layer
Input_Lake_Features	Input lake polygon file	Feature Layer
Value_field2_	A new field ID must be created in the lake polygonfile - Having a FID which contains a value 0 will not work to create lakecatchments.These must be different values to those in the newFID created in the dam point file. See accompanying guidance notes in the Toolbox Manual on this step.	Field
Snap_Raster2_	Set the snap raster to be the stream order raster output created in step f	Raster Layer
LakeRaster	Name for the new output lake raster file	Any value
Mosaic_Raster_Dataset_Name_ with_Extension	Name for the new mosaicked dam and lake raster output	Raster Layer
Pixel_Type	16_BIT_SIGNED	String
Number_of_Bands	1	Long
Mosaic_Operator (Optional)	FIRST	String
Cellsize	Same as snapgrid	Analysis cell size
Output_Coordinate_System	Same as snapgrid	Coordinate System
outputworkspace	Workspace in which to save the output	Workspace or Raster Catalog

Technical diagram

3.8 RECLASSIFY points and use the EXPAND tool in ArcGIS Spatial Analyst to ensure the dam points overlay the stream flow network correctly

a. Take the output from Tool SE h1 and reclassify the dam points, using the Reclassify tool. All the individual points should be reclassified so that the output file only contains one value (1), as shown in the screenshot below.

Reclassify	
Input raster	Output raster
dams 💌 🖻	
Reclass field	The output reclassified raster.
VALUE 🗸	The output will always be of integer
Reclassification	type.
Old values New values 1 1 2 1 3 1 4 1 5 1 6 1 7 1 Load Save Reverse New Values Precision Output raster C: UN-REDD/dams_rec C: Change missing values to NoData (optional)	type.
-	÷
OK Cancel Environments << Hide Help	Tool Help

b. Run the Expand tool on the output reclassified dams raster dataset.

Expand			
 Input raster 		^ []	Expand
Output raster Number of cells			Expands specified zones of a raster by a specified number of cells.
Zone values			
		•	
		•	
		Ŧ	Ţ
	OK Cancel Environments	<< Hide Help	Tool Help

Parameter	Explanation	Data Type
input_raster	The input raster for which the identified zones are to be expanded. This is the dams layer, which has been reclassified so that all points are in one category. It must be of integer type.	Raster Layer
number_cells	The number of cells to expand each specified zone by. The value must be an integer greater than 1. This will be trial and error – The number of cells you need to expand your dam point by will depend on how far certain dams are from the stream order network. The dams need to expand to touch the nearest high order stream in order to generate the catchments correctly.	Long
zone_values	The list of zone values to expand. All your dam points should be reclassified so that the value = 1. Enter 1 in this box. The zone values must be integers.	Long
out_raster	The output generalized raster. The specified zones of the input raster will be expanded by the specified number of cells. Nb. Check the output of this step against the stream order network to ensure that the dam points have expanded enough to touch the stream order network, and that they are touching streams of a high order (i.e. >4th order stream).	Raster Layer

3.9 Tool SE i1: Generates upstream catchments of dams AND water bodies from step 8

ArcToolbox	🛞 🧟 Exploring Multiple Benefits toolbox

This tool undertakes the following steps:

• Generate catchments to determine the contributing area above a set of cells in a raster (i.e. the upstream catchment of dams and lakes)

How to Run the Tool

- a. Double click on the tool 'Tool SE i1: Generates upstream catchments of dams AND water bodies from step f'
- **b.** In the box which appears (see below), fill in the white boxes (parameters) accordingly.
- c. Click OK to run the tool

눧 Tool SE i1: Generates upstream catchments of dams AND water bodies from st	tep f		
Input flow direction raster	^	Tool SE i1: Generates upstream catchments of dams AND water	*
Input raster or feature pour point data (dams and/or lakes)		bodies from step f	
- E		This tool and an anti-hand an	
Pour point field (optional)		the flow direction output raster created in	
Output Coordinate System		step f and dam (and lake)raster created in	
Same as Input 🔹 🖻		either step h2 or h1	
• outputworkspace			
• OutputName			
			_
OK Cancel Environments << Hide Help		Tool Help	
	_		

Parameter	Explanation	Data Type
Input_flow_direction_raster	Input flow direction raster created in step f	Composite Geodataset
Input_raster_or_feature_pour_p oint_datadams_and_or_lakes _	The dams and lakes raster created in step h1	Composite Geodataset
Pour_point_field (Optional)	Optional - leave blank	Field
Output_Coordinate_System	Same as snapgrid	Coordinate System
outputworkspace	Workspace in which to save the output	Workspace
OutputName	Name for new upstream catchments	Anyvalue

Technical diagram

3.10 Tool SE j: Reclassify upstream catchments from step i

ArcTeelhew	
Arciooldox	

🚇 🧟 Exploring Multiple Benefits toolbox

This tool undertakes the following steps.

• Reclassifies the upstream output from '**Tool SE i'** into 2classes (1 = presence of dam catchment and 0 = not upstream catchment.

How to Run the Tool

- a. Double click on the tool 'Tool SE j: Reclassify upstream catchments from step i'
- **b.** In the box which appears (see below), fill in the white boxes (parameters) accordingly. Note: Once the input catchment raster is selected, ArcMap will guess what reclassification so manually enter the values for the 2 classes.
- **c.** Click OK to run the tool

💬 Tool SE j: Reclassify upstream catchments from step i	
Precision	Tool SE j: Reclassify upstream catchments from step i This tool reclassifies the upstream catchments raster produced in step i
Change missing values to NoData (optional) outputworkspace OutputName	*
OK Cancel Environments << Hide Help	Tool Help

Parameter descriptions

Parameter	Explanation	Data Type
<input_raster></input_raster>	Upstream catchments raster produced in step i	Composite Geodataset
<reclass field=""></reclass>	The field upon which the reclass will be based	Field
<reclassification></reclassification>	All the values for watersheds which contain a dam (and/or lake) should be reclassed to "1"	Remap
<change_missing_values_to_no Data (Optional)></change_missing_values_to_no 	Do not use	Boolean
OutputName	Workspace in which to save the output	Any value
<outputname></outputname>	Name for new reclassified catchment raster	Any value

3.11 Tool SE k: Sum outputs from b, e, and j and clip to forest extent

ArcToolbox	🎯 🎉 Exploring Multiple Benefits toolbo

This tool undertakes the following steps.

- Sum outputs a, e, and i to create a new raster
- Clip the new raster (result of sum) to forest extent

An additive 'importance of forests for soil stabilization and limiting soil erosion' layer is created using this overlay approach with the data prepared in the above tools. Since there are 3 classes for slope (1-3), 3 classes for mean annual or wet season precipitation (1-3) and 2 for the presence or absence of a dam catchment (0-1) there is a maximum of 8, and a minimum of 2, and therefore 7 classes.

How to Run the Tool

- a. Double click on the tool 'Tool SE j: Reclassify upstream catchments from step i'
- **b.** In the box which appears (see below), fill in the white boxes (parameters) accordingly. *(Map algebra example below)*

A nhraimi	
"slope3class_v2" + "upcatch_red" + "rain_3class"	

c. Click OK to run the tool

Pa Tool SE k: Sum outputs from a, e, and i and clip to forest extent	
Map Algebra expression 7 8 9 / == != & Conditional — ▲ Con 4 5 6 >>= Bick SetNull Math 1 2 3 - < <= ▲	Tool SE k: Sum outputs from a, e, and i and clip to forest extent This tool calculates the final additive soil erosion risk layer and uses a vector or raster mask to clip the risk layer to an area of interest
OutputVame combined raster OutputVame combined raster Input Clip Dataset Snap Raster Cell Size Maximum of Inputs	
Output Coordinate System As Specified Below Unknown outputworkspace OutputWorkspace OutputWorkspace	
Oupduverne OK Cancel Environments) << Hide Help	. Tool Help

Parameter	Explanation	Data Type
Man Algobra ovprossions	Add together the reclassed rasters	Raster Calculator
	from steps b; e and j	Expression
OutputName combined raster	Name for the new soil erosion risk	Δηγγαίμε
outputtanic_combined_laster	output raster	
Innut Clin Dataset	Vector or raster mask to clip the risk	Composite Geodataset
mput_enp_butuset	layer to an area of interest	composite debuddaset
Snan Raster	Set the snap raster to be the stream	Rasterlaver
	order raster output created in step f.	haster Layer
	Set the cell size to besame as the	
cell_size	stream order raster output created in	Cell Size
	step f.	
	Coordinate system of the output Raster	
Output_Coordinate_System	dataset (this will be the same as the	Coordinate System
	Snap Raster)	
outputworkspace		Workspace
OutputName	Name of the new output raster dataset	Any value

3.12 Example maps for illustrating the stages of the mapping process for Panama

Methods and data sources:

The relative importance of forest has been evaluated as a function of slope, rainfall and the presence of something important downstream that could be adversely affected by soil erosion (dams and lakes). This method uses an overlay approach, where data on precipitation is combined with data generated for slope, and upstream catchments of dams and lakes. This is then combined with forest data.

Elevation: Lehner, B., Verdin, K., Jarvis, A. (2008): New global hydrography derived from spaceborne elevation data. Eos, Transactions, AGU, 89(10): 93-94. See http://hydrosheds.cr.usgs.gov/

Precipitation: Vet season average May - August (m.). Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis, 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. See http://www.worldclim.org/ Dams:Lehner, B., R-Liermann, C., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P. et al.: High resolution mapping of the world's reservoirs and dams for sustainable river flow management. Frontiers in Ecology and the Environment. Source: GWSP Digital Water Atlas (2008). Map 81: GRanD Database (V1.0). Available online at http://atlas.gwsp.org. This was combined with national data on hydroelectric and other dams from Autoridad de los Servicios Públicos (ASEP) and Autoridad Nacional del Ambiente de Panamá (ANAM) 2012. Forest Cover: National dataset of 2008 land cover (CATHALAC and CATIE 2011).

Using GIS software to support REDD+ planning