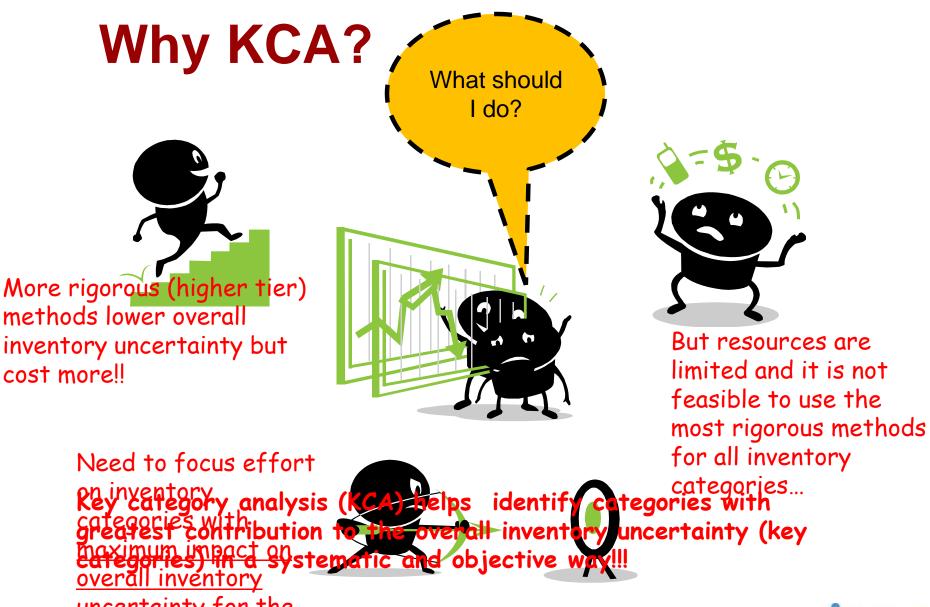


Key Category Analysis Nalin SRIVASTAVA

IPCC TFI TSU


IDCC

REGIONAL AFRICAN WORKSHOPS ON REDD+ NATIONAL FOREST MONITORING SYSTEMS AND GREENHOUSE GAS NATIONAL INVENTORY SYSTEMS

25-27 February 2014, Zambia

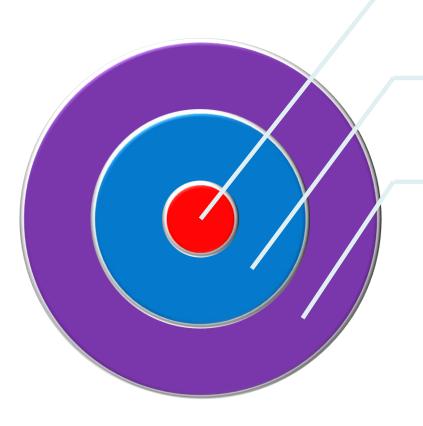
INTERGOVERNMENTAL PANEL ON Climate change

<u>uncertainty</u> for the <u>most efficient</u> use of available resources.

INTERGOVERNMENTAL PANEL ON Climate change

Key Categories

 These are emission or removal categories that are contribute the most to the total or trend in emissions and removals of the total national inventory of GHGs:


"A **key category** is one that is prioritised within the national inventory system because its estimate has a significant influence on a country's total inventory of greenhouse gases in terms of the absolute level, the trend, or the uncertainty in emissions and removals. Whenever the term **key category** is used, it includes both source and sink categories."

• It is *good practice* to use higher tier methods (at least Tier 2) for *key categories*.

For what purpose is KCA used?

Identification of *key categories* for prioritization of resources in national inventory system (focus resources on *key categories*)

Guiding choice of methods (higher tier methods for *key categories*)

INTERGOVERNMENTAL PANEL ON Climate change

IDCC

More attention should be given to *key categories* for QA/QC

Types of KCA Analysis

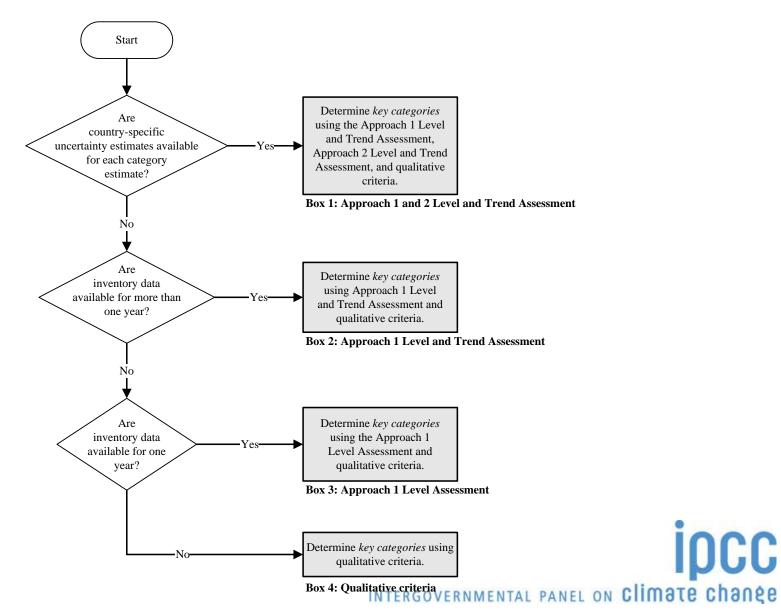
- Quantitative Analysis numerical values that describe the contribution of a category to the national total emissions and removals and their trend (Level and Trend Assessments)
- Qualitative Analysis considers other criteria that are not easily assessed through a quantitative analysis

Steps

- 1. Prepare the list of categories based on the IPCC categories
 - 1. Identify special considerations related to analysis (e.g. fossil fuel combustion is a large emission category that can be broken down to sub-categories)
 - 2. Each GHG emitted or removed from a single category should be considered separately
 - 3. Source categories that use the same EF based on common assumption should be aggregated before analysis
- 2. Perform quantitative analysis of the relationship between the level and the trend of each category emissions and total national emissions
 - 1. Use CO₂-equivalent emissions calculated using the global warming potentials (GWP)

INTERGOVERNMENTAL PANEL ON Climate change

- 3. Consider any qualitative considerations that would add additional key categories
- 4. Document the results and use in inventory compilation.


Approaches to Quantitative KCA

- <u>Approach 1</u>. Approach based on contribution to total and trend
 - Simple
 - Uses only data from emission/removal estimate
- <u>Approach 2</u>. Based on contribution to overall uncertainty
 - More complex
 - Needs a complete uncertainty analysis to have been performed
- The two approaches can be used together when setting priorities.

How to select Approach to use...

Approach 1 – Level Assessment

$$Level = \frac{|category\ estimate|}{total\ contribution}$$

- "Contribution" is the sum of all the emissions and removals (expressed as positive numbers)
- Mathematically:

$$L_{x,t} = \left| E_{x,t} \right| / \sum_{y} \left| E_{y,t} \right|$$

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Approach 1 – Level Assessment (2)

- The level is calculated for each category.
- The largest ones that cumulatively add up to 95% of the total are selected.
- These are the key categories.

			Emission/ Removal
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000
1A1	Fuel Combustion Activities - Energy Industries	Oil	200
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502
3A2	Manure Management	CH_4	543
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345
3B1b	Land Converted to Forest Land	CO ₂	879

INTERGOVERNMENTAL PANEL ON Climate change

			Emission/ Removal	Absolute
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000	10000
1A1	Fuel Combustion Activities - Energy Industries	Oil	200	200
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300	1300
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123	123
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502
3A2	Manure Management	CH ₄	543	543
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345
3B1b	Land Converted to Forest Land	CO ₂	879	879
L			1	20892

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

			Emission/ Removal	Absolute	Level
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000	10000	47.9%
1A1	Fuel Combustion Activities - Energy Industries	Oil	200	200	1.0%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300	1300	6.2%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123	123	0.6%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%
3A2	Manure Management	CH ₄	543	543	2.6%
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345	11.2%
3B1b	Land Converted to Forest Land	CO ₂	879	879	4.2%
		L		20892	

INTERGOVERNMENTAL PANEL ON Climate change

ipcc

			Emission/ Removal	Absolute	Level
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000	10000	47.9%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345	11.2%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300	1300	6.2%
3B1b	Land Converted to Forest Land	CO ₂	879	879	4.2%
3A2	Manure Management	CH_4	543	543	2.6%
1A1	Fuel Combustion Activities - Energy Industries	Oil	200	200	1.0%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123	123	0.6%
				20892	

INTERGOVERNMENTAL PANEL ON Climate change

ipcc

			Emission/ Removal	Absolute	Level	Cumulative
1A1	Fuel Combustion Activities - Energy Industries	Coal	10000	10000	47.9%	47.9%
1A3a	Fuel Combustion Activities - Transport - Civil Aviation	CO ₂	5502	5502	26.3%	74.2%
3B1a	Forest Land Remaining Forest Land	CO ₂	-2345	2345	11.2%	85.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Coal	1300	1300	6.2%	91.6%
3B1b	Land Converted to Forest Land	CO ₂	879	879	4.2%	95.9%
3A2	Manure Management	CH ₄	543	543	2.6%	98.5%
1A1	Fuel Combustion Activities - Energy Industries	Oil	200	200	1.0%	99.4%
1A2	Fuel Combustion Activities - Manufacturing Industries and Construction	Gas	123	123	0.6%	100.0%
				20002		

20892

ipcc

Approach 1 – Trend Assessment

$$T_{x,t} = \frac{\left|E_{x,0}\right|}{\sum_{y}\left|E_{y,0}\right|} \bullet \left| \left[\frac{\left(E_{x,t} - E_{x,0}\right)}{\left|E_{x,0}\right|}\right] - \frac{\left(\sum_{y} E_{y,t} - \sum_{y} E_{y,0}\right)}{\left|\sum_{y} E_{y,0}\right|} \right|$$

if zero in base year : $T_{x,t} = \left| E_{x,t} / \sum_{y} \left|E_{y,0}\right| \right|$

 Looks complex but easily to calculate with a spreadsheet (see guidelines)

Approach 1 – Trend Assessment Sector **Emissions П**_{×,0} Emission Tr*E*nd inE т ×,t slope category x, 0Trend in ×,0 total 111 YEAR **Base Year** Current year $\sum E_{v,t} - \sum E_{v,0}$ $T_{x,i}$ ={Category Significan ce}×[category trend]-[overall trend] y

climate

PANEL ON

INTERGOVE

Example Trend Assessment

Α	В	С	D	Е	F	G	Н
IPCC Category	IPCC Category	Greenhouse Gas	$\mathbf{E}_{\mathbf{x},0}$	$\mathbf{E}_{\mathbf{x},t}$	Trend Assessment	% Contribu- tion to	Cumulative Total of
Code		Gas	(Gg CO ₂ eq)	(Gg CO ₂ eq)	T _{x,t}	Trend	Column G
3B1a	Forest Land remaining Forest Land	CO ₂	-23 798	-21 354	0.078	0.147	0.147
1A1	Energy Industries: Solid	CO ₂	9 279	17 311	0.042	0.079	0.227
1A3b	Road Transportation	CO ₂	10 800	11 447	0.040	0.076	0.302
1A4	Other Sectors: Liquid	CO ₂	6 714	5 651	0.040	0.075	0.378
1A2	Manufacturing Industries and Construction: Solid	CO ₂	6 410	5 416	0.038	0.072	0.450
3B3a	Grassland Remaining Grassland	CO ₂	-1 071	2 974	0.037	0.069	0.519
1A1	Energy Industries: Peat	CO ₂	3 972	9 047	0.035	0.066	0.585
1A1	Energy Industries: Gas	CO ₂	2 659	6 580	0.029	0.054	0.639
4 A	Solid Waste Disposal	CH ₄	3 678	2 497	0.028	0.053	0.692
3C4	Direct N ₂ O Emissions from managed soils	N ₂ O	3 513	2 619	0.024	0.046	0.738
1A2	Manufacturing Industries and Construction: Liquid	CO ₂	4 861	4 736	0.022	0.042	0.780
🎽 3B2a	Cropland Remaining Cropland	CO ₂	1 277	211	0.017	0.031	0.811

WMC

Approach 2: Level Assessment

$$LU_{x,t} = \left(L_{x,t} \bullet U_{x,t}\right) / \sum \left[\left(L_{y,t} \bullet U_{y,t}\right)\right]$$

- Where *L* is the level assessment and *U* the uncertainty for category *x* in year *t*
- Similar method to Approach 1 but select those that contribute 90% cumulatively not 95%

Approach 2: Trend Assessment

$$LU_{x,t} = \left(T_{x,t} \bullet U_{x,t}\right)$$

- Where *T* is the trend assessment and *U* the uncertainty for category *x* in year *t*
- Similar method to approach 1 but select those that contribute 90% cumulatively not 95%

Some qualitative criteria

- Mitigation techniques and technologies
- Expected growth
- No quantitative assessment of uncertainty performed (e.g. high uncertainty, large stocks)
- Completeness (incomplete inventory gives incorrect KC results); refer to Vol.1 Chapter 2 for the Approaches to Data Collection.

Example Reporting

UNEP

WMO

	Summary of key category a	nalysis for Finla	nd	
IPCC Categor y Code	IPCC Category	Greenhouse gas	Criteria	Comments
1A	Fuel Combustion Activities: Liquid	CO ₂	L 2	Aggregated
1A	Fuel Combustion Activities: Solid	CO ₂		Aggregated
1A	Fuel Combustion Activities: Peat	CO ₂		Aggregated
1A1	Energy Industries: Solid	CO ₂		
1A1	Energy Industries: Peat	CO ₂		
1A1	Energy Industries: Gas	Cr		
1A1	Energy Industries: Liquid			
1A2	Manufacturing Industries and Construction: Solid			
1A2	$\mathbf{L} = key \ category \ according \ to \ level$			
1A2	T = key category according to tren			Τ2
1A2	Q = key category according to quantum Q	alitative crit	eria.	
1A3b	Road Transportation	CO ₂	L1, T1	
1A3b	Road Transportation: Cars with Catalytic Converters	N ₂ O	L2, T2	Aggregated
A3c	Railways	CO ₂	Q	Subjective Trend

INTERGOVERNMENTAL PANEL ON CIIMATE CHANGE

Summary

- KCA identifies those source and sink categories that have most influence on the total emissions/removals and/or trend.
- Improvements to these categories will most improve an inventory.
- Compilers should focus resources on Key categories.
- It is good practice to use at least a Tier 2 method for key categories.

INTERGOVERNMENTAL PANEL ON Climate change

• Two approaches are provided – compilers should use the one that fits their needs.

Force on National Greenhouse Gas Inventories

Thank you! Any Questions?

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

