Sources of errors in biomass

AWF

AWF

Dr. Lutz Fehrmann Regional Course on REDD+, MRV and Monitoring 11-15 July 2011 Sokoine University of Agriculture, Morogoro, Tanzania

estimation

Objectives of this Session

- Summarize the relevant error sources
- Example of classification errors

- E.g. error in area estimates for distict strata, missclassification of sample points
- Regionalization error
 - When producing the map

Dr. Lutz Fehrmann & Prof. Dr. Christoph Kleinn, Georg-August-University Göttingen

Wall-to-wall mapping of biomass

AWF

AWF

- Imputation techniques (like knn) can only assign / predict values that are in the range of field observations!
- Crucial: However the imputation/classification is done, it always results in a colorful map that seems plausible

Other error sources

- When using RS data, other possible error sources are often ignored:
- Data are only usable after multiple preprocessing steps that might be source of additional errors:
 - Geometric correction
 - Cloud detection
 - Atmospheric correction
 - Topographic Normalization
 - Image balancing

FRA 2010 categories	FAO 1990	FAO 2000	FAO 2005	FAO 2010	This study	
			Cover [km ² :	and %]	,	SE
Forest	68 470	62 480	59 490	56 490	116 847	9
	24.9%	22.8%	21.7%	21.0%	42.6%	
Other wooded land	58 610	54 350	52 220	50 090	4 467	4
	21.4%	19.8%	19.1%	18.0%	1.6%	
Forest and other wooded	127 080	116 830	111 710	106 580	121 315	9
land	46.4%	42.6%	40.8%	39.0%	44.2%	
Other land	ad 146 520 156 770	161 890	167 020	146 729	8	
	53.5%	57.2%	59.1%	60.9%	53.6%	
of which with tree	51 350	55 180	57 100	59 020	13 398	17
cover	18.7%	20.1%	20.8%	21.5%	9.1%	
Total land area	273 600	273 600	273 600	273 600	270 060	
	99.9%	99.9%	99.9%	99.9%	97.8%	
Inland water bodies	400	400	400	400	5 957	99
	0.1%	0.1%	0.1%	0.1%	2.2%	
Total area of country	274 000	274 000	274 000	274 000	274 000	
	100%	100%	100%	100%	100%	

Cale of		53.5%	57.2%	59.1%	60.9%	53.6%	
2. S.	of which with tree	51 350	55 180	57 100	59 020	13 398	17.4
19.5	cover	18.7%	20.1%	20.8%	21.5%	9.1%	
	Total land area	273 600	273 600	273 600	273 600	270 060	-

AWF

Dr. Lutz Fehrmann & Prof. Dr. Christoph Kleinn, Georg-August-University Göttingen

Some conclusions on sample size

AWF

- In order to reduce the SE% for the estimate of forest land from 9.9% to 5%:
 - for a sample size of n_{0.9%} = 46 observed field plots and assuming simple random sampling with the common error probability of α = 0.05 (setting *t* = 2), one would estimate a necessary sample size by the factor $(9.9/5)^2 = 3.9$ times larger than in our study, that is about $n_{5\%} = 3.9*46 = 179$.
- The major question is, whether a government would be ready to cover expenses 3.9 times higher for a 2 times higher precision?

Where to invest to reduce errors?

- Interesting research question with far reaching significance in practice.
 - More field observations.
 Better measurement devices.

 - Higher resolved remote sensing imagery? - Lidar everywhere?
 - Better biomass models (based on more measurements)?
 - Better co-registration between RS and field plots?
 -?
- · The question is: where in the entire estimation process to allocate more resources to achieve the best improvement of precision per €: