USING SPATIAL INFORMATION TO SUPPORT DECISIONS ON SAFEGUARDS AND MULTIPLE BENEFITS FOR REDD+

STEP-BY-STEP TUTORIAL:

ANALYSING FOREST COVER CHANGE WITH RESERVED LAND AND FOREST CARBON STOCKS IN QGIS 2.X

The UN-REDD Programme is the United Nations Collaborative initiative on Reducing Emissions from Deforestation and forest Degradation (REDD) in developing countries. The Programme was launched in September 2008 to assist developing countries prepare and implement national REDD+ strategies, and builds on the convening power and expertise of the Food and Agriculture Organization of the United Nations (FAO), the United Nations Development Programme (UNDP) and the United Nations Environment Programme (UNEP).

The United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) is the specialist biodiversity assessment centre of the United Nations Environment Programme (UNEP), the world's foremost intergovernmental environmental organisation. The Centre has been in operation for over 30 years, combining scientific research with practical policy advice.

Prepared by Corinna Ravilious and Lisen Runsten

Copyright: UNEP

Copyright release: This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement to the source is made. Re-use of any figures is subject to permission from the original rights holders. No use of this publication may be made for resale or any other commercial purpose without permission in writing from UNEP. Applications for permission, with a statement of purpose and extent of reproduction, should be sent to the Director, UNEP-WCMC, 219 Huntingdon Road, Cambridge, CB3 ODL, UK.

Disclaimer: The contents of this report do not necessarily reflect the views or policies of UNEP, contributory organisations or editors. The designations employed and the presentations of material in this report do not imply the expression of any opinion whatsoever on the part of UNEP or contributory organisations, editors or publishers concerning the legal status of any country, territory, city area or its authorities, or concerning the delimitation of its frontiers or boundaries or the designation of its name, frontiers or boundaries. The mention of a commercial entity or product in this publication does not imply endorsement by UNEP.

We welcome comments on any errors or issues. Should readers wish to comment on this document, they are encouraged to get in touch via: <u>ccb@unep-wcmc.org</u>.

Citation: Ravilious, C. and Runsten, L. (2015) Using spatial information to support decisions on safeguards and multiple benefits for REDD+. Step-by-step tutorial: Forest cover change map, combined with reserved land and forest carbon stocks using QGIS 1.8 and 2.x. Prepared on behalf of the UN-REDD Programme. UNEP World Conservation Monitoring Centre, Cambridge, UK.

Acknowledgements: With thanks to support provided by IUCN.

These training materials have been produced from materials generated for working sessions held in various countries to aid the production of multiple benefits maps to inform REDD+ planning and safeguards policies using open source GIS software.

Contents

1.	Introduction	4
2.	Create a forest cover change map, displayed with forest carbon stocks and reserved	
	land4	
	2.1 Clip Vector layers to the area of interest	4
	2.2 Clip Hansen Tree cover, Loss, Gain and Loss year data to the area of interest	4
	2.3 Project the six clipped datasets to the region of interest	6
	2.4 Project rasters	6
	2.5 Calculating statistics	7
An	nex 1: Summary of first steps (already prepared in advance of the working session)	12

1. Introduction

REDD+ has the potential to deliver multiple benefits beyond carbon. For example, it can promote biodiversity conservation and secure ecosystem services from forests such as water regulation, erosion control and non-timber forest products. Some of the potential benefits from REDD+, such as biodiversity conservation, can be enhanced through identifying areas where REDD+ actions might have the greatest impact using spatial analysis.

Open Source GIS software can be used to undertake spatial analysis of datasets of relevance to multiple benefits and environmental safeguards for REDD+. Open-source software is released under a license that allows software to be freely used, modified, and shared (http://opensource.org/licenses). Therefore, using open source software has great potential in building sustainable capacity and critical mass of experts with limited financial resources.

2. Create a forest cover change map, displayed with forest carbon stocks and reserved land

In 2013, a global forest cover change (loss and gain) dataset was released by Hansen et al (2013)¹, showing the change over the period 2000-2012. In this tutorial, we are using this dataset and overlaying it with carbon stocks inside and outside natural forest as well as reserved land.

2.1 Clip Vector layers to the area of interest

a) Clip the protected areas to the area of interest. Any part of the protected area that falls outside of these regions will be excluded from the analysis. In this example we are using the April 2014 version of the World Database on Protected Areas, which includes international protected areas such as Ramsar sites and World Heritage Sites.

c) Clip the natural forest extent (note that depending on the definition being used, *natural forest* can include, for example, montane and coastal forest, open and closed woodlands, mangroves, bushlands and thickets).

(For clipping: Vector >> Geoprocessing tools >> Clip)

2.2 Clip Hansen Tree cover, Loss, Gain and Loss year data to the area of interest

The Hansen tiles are available for download. They then need to mosaiced together and clipped to the area or country boundary being used in the working session. **For details of this process see Annex 1**.

We will now clip the three datasets (tree cover, tree loss and tree gain) to the area of interest.

¹ Hansen, M.C. 2013. High-resolution Global Maps of 21st – century Forest Cover Change. Science, 342 (6160):850-853. Available at <u>http://www.sciencemag.org/content/342/6160/850</u>

- a) For Clipping Raster: use the Processing toolbox "Clip raster by mask layer" (part of the GDAL tools). Right click on the tool and select "Execute as batch process".
- b) Click on the top left dotted grey box and navigate to the Hansen folder. Then click on the top dotted box in the
- Keclassify grid values 🖶 📶 GDAL/OGR [32 geoalgorithms] GDAL] Analysis ⊕ [GDAL] Conversion GDAL] Extraction Clip raster by extent ip raste Execute Contour Execute as batch process ⊕ [GDAL] Miscellaneou ⊕ [GDAL] Projections Edit rendering styles for outputs ⊡ [OGR] Conversion ⊡ [OGR] Miscellaneous Ð GRASS commands [167 geoalgorithms]

"mask layer" column. Navigate to the area of interest shp. file. After selected, double click on the column header to populate the rows below.

Paran	neters	Log Heb	iter by ma	0.0				-	-	-		-	
		e to take ti	nd output	alp	Keep resolution of output	t raster	Additional creation parameters	Outp	ut layer.			Load in Q0	ilS
hp		none	No		Yes		2	013_treecover2000_00	N_030E.tif	11,000	Yes		-
hp	-	none	No	٠	Yes			isen_GFC2013_loss_00	N,030E.t/f	1.	Yes		
hp	-	none	No	٠	Yes	•		sen_GFC2013_gain_00	Ns.3060_M	-	Yes		
•								101					1.
							0%						
								Run	Add ross	Del	ete row	Close	Canal

- c) Scroll along and change the values in "keep resolution of output raster" to Yes. Double click on the column header to populate all rows.
- d) Under output layer, click on the dotted box and navigate to the Hansen_clipped folder where you want the outputs to be placed. Write any name in the file name, e.g. clip_.tif. Then click save. In the box that appears, "Autofill mode" is changed to "fill with parameter values" and "parameter

to use" is set to "**Input layer**". This action will use "clip_" in combination with the input file name as the output file name.

🕺 Autofill setting	; ? ×
Autofill mode	Fill with parameter values
Parameter to use	Input layer 💌
	OK Cancel

You should now have six layers in the project clipped to the area of interest:

- 1. WDPA
- 2. Forest loss
- 3. Forest gain
- 4. Tree cover
- 5. Natural forest
- 6. The area of interest boundaries

2.3 Project the six clipped datasets to the region of interest

Next, we want to project all these layers in Lambert Azimuthal equal area projection (centre lat and centre long correspondent to your area of interest).

 a) In the processing toolbox search for "reproject". Right click on Reproject layer and choose "execute as batch process". The input layers will be the area of interest boundaries, the clipped WDPA and the clipped natural forest layers. GDAL/OGR [32 geoalgorithms] GDAL] Projections Warp (reproject) QGIS geoalgorithms [79 geoalgorithms] Vector general tools Reproject I Execute Execute as batch process Edit rendering styles for outputs

Parameters Log Help					
Input layer	Target (ORS	Reprojected layer	Load	in QGIS
Tutorial\Admin\Morogoro_Iringa.shp	 USER:100001		Admin/la_Morogoro_Iringa.shp	 Yes	
ss\WDPA_poly_April2014_clipped.shp	 USER:100001		PA_poly_April2014_clipped.shp	 Yes	-
C_NatForest_may13_def2_clipped.shp	 USER:100001		Forest_may13_def2_clipped.shp	 Yes	
		0%			

- **b)** Under "target CRS" select your custom projection for **Lambert Azimuthal equal area** (centre lat and centre long correspondent to your area of interest). Double click on the heading to populate.
- c) For the reproject layer click on the dots and for each dataset go to the location of where it was originally stored and give it a filename the same as before, adding "la_" at the end.
- d) When the autofill settings pop up, change to fill with parameter values as before. Leave "load into QGIS" as yes and click run. You should get a message saying "Batch processing successfully completed". Close the reprojecting window.

🌠 Batch	processing
1	Batch processing successfully completed!
	ОК

2.4 Project rasters

Now we need to reproject the data to an equal area projection for calculating statistics. This will give a true representation of the area and give the output in area instead of decimal degrees.

 a) Find the GDAL tool Warp (reproject) and right click on it. Select Execute as batch process.

GDAL/OGR [32 geoa	lgorithms]
🔐 Warp (repr	Execute
 Vector general tools 	Execute as batch process
📟 🐨 Reproject la	Edit rendering styles for outputs

- b) Click on the dots of the input file and select the clip_Hansen gain, loss and tree cover files. The second column shows the current projection of the dataset. The third column contains the destination projection (what you want to project to). Here you want to select your custom Lambert projection. It is helpful to type "laea" in the filter box. This enables you to more easily find your custom projection.
- c) Click on your custom projection and make sure that it is selected in the custom CRS box.
- d) Double click on the destination heading we can populate the custom CRS for the three rows/datasets. Scroll to the output layer column and navigate to the place where the clipped Hansen raster layers are stored. In the file name box type "la_" and click save. When the autofill settings box appears, change to fill with parameter values. Click ok.

The output name will begin with **la_** and end with the same name as the input file. **Click run**.

If the tool fails, alternatively right click on each of the Hansen datasets and save as, making sure that you select your custom projection.

It is important to make sure both the rasters and vectors are in identical Lambert Azimuthal equal area projections otherwise the statistics tools we are going to use will fail.

2.5 Calculating statistics

We would like to calculate some statistics that tells us the percentage of forest gain and loss inside protected areas. Before calculating any statistics remove any of the unprojected datasets from the table of contents so that you only have the five lambert azimuthal layers left.

- a) The function grid statistics for polygons uses the file name to add attributes to new fields at the end of the attribute table. Each new field will be named Filename_AttributeName. Right click on every data layer in the project and choose Properties >> general. Change layer name to something very small, e.g.:
- tree cover to "tc"
- protected areas to "pa",
- region to "reg"
- Ioss to "I"
- gain to "g"
- natural forest to "nf"
- **b)** Symbolize the data by loading the pre-created QML style file in the QML folder on the USB.

🕺 Layer Properties - reg S	Style		? ×
🔀 General	Single Symbol		
😻 Style		Unit Milimeter Transparency 0%	
(abc) Labels		Color	
Fields		Symbols in group	Open Library
Kendering	Fill		
🧭 Display	Simple fill	corners diagonal dotted green land water wine	
Octions			
• ┥ Joins			
Diagrams			
🥡 Metadata			
	Save		Advanced 🔻
	▼ Layer rendering		
	Layer transparency		
	Layer blending mode Normal	▼ Feature blending mode Normal	
	Load Style	Save As Default Restore Default Style Save	Style 👻
		OK Cancel Apply	Help

- c) In the processing toolbox filter by "grid stat". Select the tool under SAGA called grid statistics for polygons. We are going to create statistics for the following:
- > Area of loss in individual protected areas
- Area of gain in protected areas
- d) Select the loss grid to be analyzed. For polygons choose the protected areas layer. The rest of the settings can be set to "No" except for "Sum" which should be yes. Click on the dots next to "Statistics" and save in the Statistics folder called "pa_loss_stats.shp". Click run.

🎸 Grid statistics for polygons	
Parameters Log Help	
Grids	
1 elements selected	
Polygons	
pa [USER: 100019]	 ✓ … Ø
Number of Cells	
No	•
Minimum	
No	-
Maximum	
No	▼
Range	
No	▼
Sum	
Yes	•
Mean	
No	•
Variance	
No	•
Standard Deviation	
No	
Quantiles	
0	
Statistics	
G:/HansenTutorial/statistics/pa_loss_stats.shp	
X Open output file after running algorithm	
0%	
	Run Close Cancel

e) Repeat the same process as (a) using the gains grid to be analyzed.

IT IS VERY IMPORTANT TO CHECK THAT THE OUTPUT OF ANY STATISTIC CALCULATIONS IS REALISTIC AND CORRECT. SOME TOOLS IN QGIS MAY GIVE INCORRECT CALCULATIONS UNDER SOME CIRCUMSTANCES. We have had some issues with the zonal statistics functions in QGIS 1.8.

f) Open the attribute table of the results. See that a new filed called L[Sum] has been added to the end of the attribute table.

🧏 A	ttribute table -	pa_loss_stats.shp	:: Features total: 10	2, filtered: 102, sele	ected: 0					
) 🕞 🛛 🗮) [E,] [I 🚱 😵 🔅	P 🗈 🛙						?
	ESP_EMAIL	YEAR	LANGUAGE	CHAR_SET	REF_SYSTEM	SCALE	LINEAGE	CITATION	DISCLAIMER	l (SUM) 🔺
0	ŀ	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	955305679.0000
1	Reported	2007	English	Not Reported	Not Reported	Not Reported	Personal commun	NULL	NULL	6312253.000000
2	ŀ	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	821926.00000000
3	ŀ	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	15996.00000000
4	\mathbf{F}	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	815038.00000000
5		NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	55971257.00000
6	ŀ	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	9798300.000000
7	-	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	1034088.000000
8		NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	21159.00000000
9	}	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
10		NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	992105.00000000
11		NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	164606.00000000
12	}	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	15615594.00000
13	-	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	5235926.000000
14		NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	3278539.000000
15	-	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	1375984.000000 👻
•	a		1		I	1			***** *****	(I)
	Show All Feature	es 🗸								

- g) Now explore the data zoom in on individual protected areas and look at the amount of loss on the screen. Look at the L[Sum] value for that protected area. Does it look reasonable? Has QGIS calculated the values correctly?
- **h)** To calculate the actual area of loss inside protected areas, and the proportion of each protected area experiencing loss, we now add two new fields:
 - L_area_km2
 - L_perc

🌠 Add co	lumn
N <u>a</u> me Comment	L_area_km2
Туре	Decimal number (real)
	double
Width	10
Precision	10
	OK Cancel

\$	Attribute table	- pa_loss_stats.shp	:: Features total: 10	2, filtered: 102, sele	ected: 0					- 0 X	
	/ 🕞 🛛) [<mark>E</mark> ,] [I 🚱 😵 🗄	يا (ا						?	
	ANGUAGE	CHAR_SET	REF_SYSTEM	SCALE	LINEAGE	CITATION	DISCLAIMER	L [SUM]	L_area_km2	L_perc	•
10	1 -	NULL	NULL	NULL	NULL	NULL	NULL	70869.00000000	NULL	NULL	
10	0 -	NULL	NULL	NULL	NULL	NULL	NULL	1530885.000000	NULL	NULL	i.
99	-	NULL	NULL	NULL	NULL	NULL	NULL	406229.00000000	NULL	NULL	
98	-	NULL	NULL	NULL	NULL	NULL	NULL	5069449.000000	NULL	NULL	
97	· -	NULL	NULL	NULL	NULL	NULL	NULL	20771.00000000	NULL	NULL	
96	-	NULL	NULL	NULL	NULL	NULL	NULL	54961644.00000	NULL	NULL	
95	-	NULL	NULL	NULL	NULL	NULL	NULL	1022077.00000000	NULL	NULL	
94	+ -	NULL	NULL	NULL	NULL	NULL	NULL	2085115.000000	NULL	NULL	
93	i.	NULL	NULL	NULL	NULL	NULL	NULL	1478035.000000	NULL	NULL	

i) Run the grid statistics for polygons tool again (start on bottom of page 7) BUT THIS TIME, instead of the protected area layer; use the area of interest boundary. The results will show how much loss and gain there are in the 2 regions.

Next we will create some summary statistics for nationally designated protected areas only. We will first dissolve the boundaries so we have a protected areas layer with no overlapping polygons.

- a) Click on the protected area layer in the TOC and from the Layer menu select Query.
- b) Do the following query: double click on STATUS in the fields menu, then click on All in the Values menu. Then click on = in the operator menu. Then double click on "Designated" in the Values menu. Click on AND (operator). Double click on "DESIG_TYPE" (fields). Click on all (values). Click on = (operator). Double click on National (values).

In the "Provider specific filter expression" field, your query should now be ready. Click **OK**.

Using open source GIS software to support REDD+ planning

				-Values			
WDPAID WDPA_PID NAME ORIG_NAME SUB_LOC DESIG				International National			
DESIG_ENG DESIG_TYPE IUCN_CAT INT_CRIT MARINE							
REP_M_AREA				Sa	mple	A	All
REP_AREA			•	Use unfilte	ered layer		
Operators							
=	<	>	LIKE	%	IN	NOT IN	
<=	>=	!=	ILIKE	AND	OR	NOT	
ovider specific fil	ter expression -						
"STATUS" = 'Desi	gnated' AND "DE	SIG_TYPE" = 'I	National				

c) You can then export the attribute table as a csv. file and open it using Excel. The data can then be used to make pivot tables and make graphs.

Annex 1: Summary of first steps (already prepared in advance of the working session)

In this process, all datasets are in geographic projection and will need to be reprojected to Lambert Azimuthal after some initial clipping steps.

The Hansen dataset is global and we have already clipped it for you to save in on processing time.

- a) In the processing toolbox, filter using the word "clip".
- **b)** Right click on "**clip grid with polygons**". Click on "execute as batch process".
- c) In the window that opens, you will see three rows and three columns for inputting data.Click on the top left grey box with dots on it.

Using open source GIS software to support REDD+ planning

		n		a Norma una-allabra			_
Parameters Log Help							
Input		Polygons		Output		Load in QGIS	
isen_GFC2013_loss_00N_020E.tif		torial\Admin\TZ_boundary.shp		isen_GFC2013_loss_00N_020E.tif		Yes	
isen_GFC2013_loss_00N_030E.tif		torial\Admin\TZ_boundary.shp		isen_GFC2013_loss_00N_030E.tif		Yes	
isen_GFC2013_loss_00N_040E.tif		torial\Admin\TZ_boundary.shp		isen_GFC2013_loss_00N_040E.tif		Yes	
isen_GFC2013_loss_10N_030E.tif		torial\Admin\TZ_boundary.shp		isen_GFC2013_loss_10N_030E.tif		Yes	
nsen_GFC2013_loss_105_030E.tif		torial\Admin\TZ_boundary.shp		hsen_GFC2013_loss_105_030E.tif		Yes	
sen_GFC2013_loss_105_040E.tif		torial\Admin\TZ_boundary.shp		nsen_GFC2013_loss_105_040E.tif		Yes	-
			0%				

- **d)** Navigate to the Hansen data folder. Hold Shift and add all six tiff files. Click **open**. At the bottom of the window, click **add row** to add a new blank row. Click again on the left had dotted box in the empty row.
- e) This time navigate to the gain data and add the six tiff files in the same way.
- f) Click add row again to add another empty row. This time navigate to the loss data and add the six files.
- g) The input layers that you wish to clip have now all been added into the batch process.
- h) Next we will fill out the polygons column. Click on the top dotted box in this column and navigate to the area/country boundary shapefile in the Admin folder. Click open. We want to use this layer for all the rows. Double click on the word polygons and the boundary file path will populate all the rows.
- i) Under output, click on the top dotted box and navigate to where you want to save the data. Save it in the Hansen_clipped folder. Give a name to the output and then click save.
- j) The autofill settings box will appear. Change the autofill mode to "fill with parameter values". Leave the "parameter to use" as input. Click ok.
- k) Leave Load in QGIS as "yes".
- I) Click run.