

Indonesia's position on climate change negotiations

Informal Discussion at EU Coordination Meeting Jakarta - October 21, 2009 Agus Purnomo – National Council on Climate Change

Presentation outline

- ☑ Navigating the Bali Road Map
- □ Findings on Indonesian emission
- □ Indonesia's voluntary commitment
- Copenhagen elements

Science-1: Historical emissions (a)

China and USA

Source: José Miguez, Ministry of Science and Technology, Brazil

Science-1: Historical emissions (b)

Science-1: Historical emissions (c)

Figure 6.1. Cumulative CO ₂ Emissions, 1850–2002						
Country	% of World	(Rank)				
United States	29.3	(1)				
EU-25	26.5	(2)				
Russia	8.1	(3)				
China	7.6	(4)				
Germany	7.3	(5)				
United Kingdom	6.3	(6)				
Japan	4.1	(7)				
France	2.9	(8)				
India	2.2	(9)				
Ukraine	2.2	(10)				
Canada	2.1	(11)				
Poland	2.1	(12)				
Italy	1.6	(13)				

Country	% of World	(Rank)
South Africa	1.2	(14)
Australia	1.1	(15)
Mexico	1.0	(16)
Spain	0.9	(20)
Brazil	0.8	(22)
South Korea	0.8	(23)
Iran	0.6	(24)
Indonesia	0.5	(27)
Saudi Arabia	0.5	(28)
Argentina	0.5	(29)
Turkey	0.4	(31)
Pakistan	0.2	(48)
Developed	76	
Developing	24	

Science-2: Concept of Negotiation Goal

- CO2 concentration in the atmosphere is an issue of equitable carbon stock management, not only a matter of reducing the speed of emitting CO2.
- Developing countries at sometime in the future are likely to emit CO2 higher than developed countries under the existing/current BAU scenario.
- Balancing the concept of historical emission and future emission projections.
- Breaking the negotiation impasse through elaboration of the Common But Differentiated Responsibility and Respective Capacities (CBDR) principle.

To get on to a sustainable 450 ppm pathway¹, the world needs to reduce emissions of GHG by 35 Gt CO2e relative to a business-as-usual scenario by 2030

Global annual emission, Gt CO₂e

1 Scientists believe that reducing global CO₂e emissions to the 450 ppm level provides a 40-60% chance of preventing global temperatures from rising more than 2 degrees Celsius. One gigaton is equal to one million tons

2 Business as Usual

A 400 ppm CO₂e pathway would increase the chances of limiting global warming to 2 degrees to 70-85%

Source: IPCC WG3 AR4, den Elzen, van Vuuren; Meinshausen; Global GHG Abatement Cost Curve v2.0, Project Catalyst analysis

Peak at 550 ppm, long-term stabilization 550 ppm

Presentation outline

- Navigating the Bali Road Map
- **I** Findings on Indonesian emission
- □ Indonesia's voluntary commitment
- Copenhagen elements

GHG Emissions Trend 2000-2005

Energy Sector Emission Projection Optimal Scenario PEN 2005-2025

SOURCE: Second National Communication - DRAFT

Indonesian emissions are estimated to grow from 2.3 to 3.6 GtCO₂e between 2005 and 2030

Projected emissions¹, Million tons CO₂e

Share of global emissions

1 Includes only direct emissions from each sector SOURCE: Indonesia GHG Abatement Cost Curve - DRAFT

... and from peat decomposition and fires on degraded land and peatland forests

(logging)

DNPI | 12

Indonesia is responsible for almost 60 percent of global emissions from peat decomposition

1 Malaysia, Papua New Guinea; Democratic Republic of Congo, Brazil 2 Canada, Russia, Scandinavia, USA

LULUCF Annual GHG emission estimates from selected sources MtCO₂e, 2005

Peatland forest

N/A Documented numbers do not exist

Deforestation Degradation Fires Peat decomposition Total 30 IFCA 526 133 496 N/A N/A 363 Min of 768 556 212 768 N/A N/A N/A Forestry¹ Houghton 1,596 N/A N/A 1,596 1.596 N/A Worldbank² 1,260 600 538 538 N/A 600 1,860 2,398 538 CAIT-WRI 1,138 N/A 1,138 1.138 N/A N/A Hooijer N/A 1,260 600 1,800 N/A 600 Wetlands Int.³ 1,400 1,900 N/A N/A 500 500 Van der Werft N/A N/A 470 N/A 450 CIFOR 250 780 N/A 470 6060 35 246 Indonesia CC 562 221 783 211 77 470 547 300 300 1.876 Hooijer et al 2006 as a baseline and Degradation (through Timber extraction) is based on the gross emissions and does not account for any reforestation that might be taking place on the conversion land taking into account that 50% of 1 CO2 emissions ca emissions might be caused by soil/roots 2 Using IFCA, WRI and roomer or an average adman average respiration 3 adapted from Siegert and Page 2007

SOURCE: IFCA; Ministry of Forestry Indonesia; Houghton; Worldbank; CAIT - WRI; Hooijer 2006; McKinsey analysis

DNPI | 14

Emissions from the power sector while relatively small today, are expected to increase 7 times by 2030

1 Electricity production estimated by PLN in the RUPTL 2007-18

2 2030 has been projected assuming similar shares of technologies in 2018

Indonesia will also see a similar seven fold increase in business as usual emissions from the road transport sector

Notes on Indonesian emissions

- Major sources of emissions: LULUCF (deforestation, peat-land conversion and fires), electricity power generation, transportation and selected industries
- LULUCF: high opportunity costs (palm oil and timber), an issue of poverty and complicated management regimes.
- Electricity Power Generation: fuel price distortion and high investment costs of renewable energy
- Transportation: creating attractive investment climate for mass rapid transportation in urban areas

GHG emissions profiles for selected countries – 2005¹

1 Including emissions associated with deforestation and land-use change, excluding carbon sink

SOURCE: UNFCCC, WRI, IEA, EPA, Mckinsey's Pathway to a Low Carbon Economy, Indonesia GHG Abatement Cost Curve - DRAFT

Presentation outline

- Navigating the Bali Road Map
- □ Findings on Indonesian emission
- Indonesia's voluntary commitment
- Copenhagen elements

Indonesia has the potential to reduce CO_2 emissions by up to 2.3 Gt per year by 2030

Societal perspective¹, 2030

1 Societal perspective implies utilizing a 4% discount rate

2. The width of each bar represents the volume of potential reduction. The height of each bar represents the cost to capture each reduction initiative

Indonesian voluntary mitigation plans

- President Yudhoyono has recently announced a bold move of greenhouse gas emission reductions ranging from 26% to 41% by 2020, depending on the level of international support.
- Based on preliminary projections of 2020 baseline emissions by the Dewan Nasional Perubahan Iklim, this would imply annual reductions ranging from 0.7-1.2 Gt CO₂e in 2020.

Achieving 26-41% reductions from the 2020 baseline would require reducing annual emissions by 0.7-1.2 GtCO₂e

GtCO₂e per year; 2020

Achieving these ambitions is possible, but it will be difficult and expensive to implement

Based on analysis of carbon abatement opportunities in Indonesia by DNPI, Indonesia could potentially reduce emissions by up to 62 percent against a 2020 baseline. However, many of these reduction options will be relatively expensive to implement, or will be challenging for other reasons (e.g. requirements for upfront capital investment, lack of technological readiness, problems with entrenched behavior). Once we factor in implementation and other costs, estimates of the resources required will surely rise.

Indonesia has a full technical potential of reducing GHG emissions by 1.7 GtCO₂e by 2020, representing 62 percent of 2020 baseline emissions

PRELIMINARY

Societal perspective¹; 2020

1 Societal perspective implies utilizing a 4% discount rate

2. The width of each bar represents the volume of potential reduction. The height of each bar represents the cost to capture each reduction initiative

CO2-eq from waste sector and the impact of each mitigation scenario

Forestry and peat sectors have the potential to achieve 55 to 85 percent of Indonesia's abatement:

- Sustainable dry-land forest management: reduction of emissions from degradation by enforcing sustainable forest management practices (Potential 2020 abatement 262 MtCO₂e)
- Avoided deforestation on small holder forestlands: reduction of emissions caused by subsistence agriculture in dry-land forests. This will require compensation and income support to rural and forest people (252 MtCO₂e)
- Avoided deforestation on small holder peat-lands: reduction of emissions caused subsistence agriculture on peat land forests. This will require compensation and income support to rural and forest people (118 MtCO₂e)
 Other levers are smaller in abatement potential but greater feasibility to implement, such as: sustainable management of and reforestation on dry-land and peat-land forests; better fire management.

Emission reduction potentials from Forestry Sector

Program	2007-2009	2010-2014	2014-2020	2021-2025	2025-2030
Rehabilitation mangrove and coastal area	Planting of mangrove and coastal vegetation	Planting of mangrove and coastal vegetation	Planting of mangrove and coastal vegetation	Planting of mangrove and coastal vegetation	Planting of mangrove and coastal vegetation
Control of forest fires	Reduction of 50% hot spots compared to 2006	Reduction of 78% hot spots compared to 2006	Reduction of 87% hot spots compared to 2006	Reduction of 95% hot spots compared to 2006	No more forest fires.
Reduction of forest fires	To change agriculture pattern without slash burning	Regulation of compulsary tree planting by community	Continuity application of compulsary tree planting regulation by community	Continuity application of compulsary tree planting regulation by community	Continuity application of compulsary tree planting regulation by community
Utilization of ex 1 million ha peat land	Mapping of ex 1 million ha peat land using SPOT4 images	Regulating integrated spatial planning of peatland for each island.	Continuity of sustainable management of peatland	Continuity of sustainable management of peatland	Evaluation and monitoring of peatland sustainable management

SOURCE: Second National Communication - DRAFT

Indonesia's reduction potential is concentrated largely in the forestry and peat sectors

1 Exclusive of demand side reductions from other sectors

DNPI | 28

Presentation outline

- Navigating the Bali Road Map
- □ Findings on Indonesian emission
- □ Indonesia's voluntary commitment
- **Copenhagen elements**

Copenhagen elements:

- Emission reductions commitments:
 - Developed countries or Annex 1: international binding commitments
 - Developing countries: national binding (law or regulation) commitments
- Registry and MRV (Measurable, Reportable, Verifiable):
 - Domestic MRV (using international standards) for Unilateral Actions
 - International MRV Internationally Supported Actions
 - Differentiated National Schedules: Developed and Developing Countries

Adaptation support:

- Additional financing for Adaptation Fund
- Accountability and delivery mechanism
- **Financing mechanism:** governance, access, accountability, delivery
- **REDD agreement:** definitions, interim financing and elaboration steps
- **Technology Transfer:** capacity building and investments

I thank you