#### **REDD+ Current status and future direction**

- Sharing experience and Plan for REDD +-





Korea Forest Service
Global Forest Resources Cooperation Division
Korea University
Division of Environmental Science and Ecological Engineering

















### Contents

- 1. NFI (Ground based Inventory)
- 2. Forest Type Map (FTM: Satellite based Map)
- 3. Forest Growth Model (FGM: NFI + FTP)
- 4. Forest Carbon Model/Map (FCM: NFI + FTP+FGM)
- 5. REDD+ Project (1+2+3+4+bilateral cooperation)



# NFI in Korea

Ground based Carbon Stock

System

Application for Forest Carbon Map





The 2<sup>nd</sup> National Forest Inventory 1978 - 1980 [3 Years]

The 3<sup>rd</sup> National Forest Inventory 1986 - 1992 [7 Years]

The 4<sup>th</sup> National Forest Inventory 1996 - 2005 [10 Years]

the 1<sup>st</sup> ~ 3<sup>rd</sup> Inventories

- ☐ Division of forest inventory
- ☐ Division of soil inventory
- □ 40 ~ 50 personnel of teams

## **Annual Inventory System**



### National Forest Inventory System



## Forest Type Map

Using Satellite Image
System

System

Application for Forest Carbon Map

### Forest Type Map

 Korea Forest Service prepared Forest Cover Maps (1:5,000) using aerial photos by scale 1:5,000.

■ The maps include the information on tree species, stand age, DBH class

and canopy closure.





## Digital Forest Type Map





# Forest Growth Model

using NFI Data

### Forest Growth Model using NFI data



# Algebraic Differences form of Regression models

#### **Regression models**



#### Algebraic Differences form of Regression models

$$- dbh_{i+1} = dbh_{i} \cdot \left(\frac{age_{i+1}}{age_{i}}\right)^{b}$$

$$h_{i+1} = h_{i} \cdot \frac{1 \cdot 2 + a \cdot e^{\frac{b}{dbh_{i+1}}}}{1 \cdot 2 + a \cdot e^{\frac{b}{dbh_{i}}}}$$

$$N_{i+1} = N_{i} \cdot \left(\frac{dbh_{i+1}}{dbh_{i}}\right)^{b} \cdot c^{(dbh_{i+1} - dbh_{i})}$$

$$v_{i+1} = v_{i} \cdot \left(\frac{dbh_{i+1}}{dbh_{i}}\right)^{b} \cdot \left(\frac{h_{i+1}}{h_{i}}\right)^{c}$$

Regenerated with new tree species by potential forest cover

 $v = a \cdot dhh^b \cdot h^c$ 

Remained current species



#### **HyTAG model (Potential Forest Type Model)**

#### **Overall Scheme of HyTAG model**

- ✓ Using the Hydrological and thermal indices, related to the forest distribution;
  - ✓ Precipitation Effectiveness Index (PEI) of Thornthwaithe (1948)
  - ✓ Warmth Index (WI) of Kira (1945)
  - ✓ Minimum Temperature of the Coldesr month Index (MTCI) of Neilson(1995)





### **HyTAG Model - Potential Forest Type with Climate Factors**

#### **Changes in potential forest distribution under IPCC scenarios**

- (N) Subalpine coniferous forest
- (A) Cool-temperate mixed forest
- (AB) Cool-temperate deciduous forest
  - (B) Temperate mixed forest

- (BC) Temperate deciduous forest
- (C) Warm-temperate mixed forest
  - (T) Warm-temperate evergreen forest
- (S) Subtropical evergreen forest



















# Forest Carbon Model

## Stock Differences

- ✓ Carbon Storage by volume
  - Quantifying current volume
  - Meaning the measurement of forest carbon storage at the current point of time
- √ Carbon Sequestration 

  ⇒ by annual growth increment (stock differences)
  - Quantifying the volume increment between two period into amount of carbon sequestration
  - Meaning the measurement of amount of sequestration between at the point of time



### Biomass & Carbon Expansion Factors

#### ✓ Quantification of carbon storage

The method of calculating forest carbon storage in i year



#### ✓ Quantification of carbon sequestration

The method of calculating forest carbon sequestration during n years



#### Calculation of Forest Carbon Storage

- Forest carbon storage using the wood basic density, biomass expansion factors and carbon conversion index
  - Step 1: Converting forest volume into above ground biomass using Wood Basic Density and Biomass Expansion Factors by tree species
  - Step 2: Converting biomass into forest carbon storage using Carbon Conversion Index (0.5)

|                 | WBD       | BEF  |  |  |
|-----------------|-----------|------|--|--|
| Japanese Pine   | 0.47      | 1.40 |  |  |
| Korean Pine     | 0.41 1.85 |      |  |  |
| Japanese Larch  | 0.45      | 0.32 |  |  |
| Pitch Pine      | 0.51      | 1.39 |  |  |
| Deciduous Trees | 0.70      | 1.43 |  |  |

# Forest carbon storage and sequestration

- ✓ An example of estimating carbon storage
  - Estimation of per hectare carbon storage in 2009 and 2010 of South Korea

| <2009> | <2010> |
|--------|--------|
| -2005  |        |

| Forest<br>type       | Volume<br>(m³) | Biomass (Tg) | Carbon<br>(tC) | Forest<br>type       | Volume<br>(m³) | Biomass (Tg) | Carbon<br>(tC) |
|----------------------|----------------|--------------|----------------|----------------------|----------------|--------------|----------------|
| Coniferous<br>forest | 115.9          | 53.3         | 26.7           | Coniferous<br>forest | 130.3          | 59.9         | 30.0           |
| Deciduous<br>forest  | 109.6          | 75.6         | 37.8           | Deciduous<br>forest  | 125.3          | 86.5         | 43.2           |
| Mixed<br>forest      | 111.4          | 64.1         | 32.0           | Mixed<br>forest      | 133.2          | 76.6         | <u> 38.3</u>   |

Average per hectare carbon storage in 2009: 32.16tC

Average per hectare carbon storage in 2010: 37.16tC





# Forest carbon storage and sequestration

#### √ Example of estimating carbon storage

✓ Estimating carbon sequestration per 1 ha during 2009 ~ 2010 in South Korea



- ✓ Estimating carbon sequestration during 2009~2010 in whole of South Korea
  - √5.00tC/ha X 6,164,470ha = 30,822,350tC

The Korea forest stored 6.16 million 5-ton trucks of carbon

- ✓ Fundamental law for low-carbon green growth
  - Article 5- government should expend the carbon sinks widely and promote applying of forest biomass, according to forest conservation and composition.

## Forest Carbon Map (NFI + FTM)

## Forest Carbon Map (NFI+FTM)

✓ The forest carbon map can be prepared, using National Forest Inventory (NFI) Data and Forest Cover Map (FCM).



Pinus densiflara (24%) Queraus (20%) P. densiflara «Querau

<National forest Inventory>

<Forest cover map>

# Carbon storage based on NFI and FTM

✓ Models were developed with the basis of growth factors data by tree species of NFI

$$DBH = a \cdot age^b$$
  $h = 1.2 + a \cdot e^{b/DBH}$   $Nha = a \cdot DBH^b$   $v = a \cdot dbh^b \cdot h^c$ 



#### Korean National Data

- 5<sup>th</sup> Forest Inventory Data by Korea Forest Service
- 5<sup>th</sup> Forest Type Map by Korea Forest Service
- Actual Vegetation Map by Ministry of Environment



### Estimation of Forest Carbon Storage

- Field Inventory
- Remote Sensing Technique
- Forest Cover Model

- National Forest Inventory (NFI) Data
- Actual Forest Type Map (AFTM)
- HyTAGs (Potential Forest Type Map)



Field Survey NFI Data

Remote Sensing
Actual Forest Type Map

HyTAGs
Potential Forest Type Map

# Estimating carbon storage in the future

### ✓ Different Forest Management Scenarios

No consideration for tree species change

Scenario 1

Tree species will not be changed in future climate



## Scenario 1: Tree species fixed

Assuming that current tree species are not changed even if climate changed



# Scenario 2: Immediate regeneration to potential tree species

Immediate regeneration to potential tree species of HyTAGs when the current species is changed into a potential species in future



# Scenario 3: Regeneration to potential tree species when cutting age reached

- Considering cutting age of current tree species
- Regeneration to potential tree species of HyTAGs when cutting age reached



## Scenario 4: natural regeneration

- ✓ Lag time applied (morality delay)
- Trees disappears perfectly in the location after lag time passed



# Compareing volume by each scenario and area change





#### Plot and Tree based Carbon Stocks using LiDAR

#### **Process of estimation**

- ✓ Generation of Canopy Height Model using the difference between DSM and DTM (a)
- Individual tree delineation using watershed segmentation method (Kwak et al., 2007) (b)
- Tree top detection and tree height estimation to be the highest value in delineated tree crown (b)
- √ k-means statistics (c)

$$SOD_{i...k} = \sum_{i}^{k} |Centroid_{i...k} - Object[n]|$$

- ✓ Indirect Extraction of DBH from LiDAR (d, e)
  - DBH = a(CA)<sup>b</sup>
  - CA means Crown Area
- ✓ Tree Volume (d)
  - = Crown Geometric Volume
    - + Stem volume below CBH





# Plot and Tree based Carbon Stocks using LiDAR

### **Individual tree delineation by density**



0 5 10 20 Meters



(a) High (1,340 N/ha)

(b) Medium (370 N/ha)

(c) Low (240 N/ha)

### ✓ Estimation of SV and Biomass by density

| factor          | Class of tree density | Max.(kg) | Min.(kg) | Mean (kg) | Std. (kg) |
|-----------------|-----------------------|----------|----------|-----------|-----------|
|                 | High (67 N/0.05ha)    | 243.82   | 116.44   | 171.68    | 31.27     |
| Stem<br>Biomass | Medium (37 N/0.1ha)   | 723.59   | 322.46   | 474.71    | 107.82    |
| Diomass         | Low (24 N/0.1ha)      | 1,253.76 | 366.90   | 687.31    | 231.17    |
| Above           | High (67 N/0.05ha)    | 314.53   | 150.21   | 221.47    | 40.34     |
| ground          | Medium (37 N/0.1ha)   | 933.43   | 415.98   | 612.37    | 139.09    |
| Biomass         | Low (24 N/0.1ha)      | 1,617.36 | 473.31   | 886.63    | 298.21    |







(c) Low (240 N/ha)





# **Plot and Tree based Carbon Stocks using LiDAR**

### Estimation of biomass and carbon storage capacity

| Plot No.    | No. of trees |               | Estimate error | Crown a      | rea (m2)      | Estimate error |
|-------------|--------------|---------------|----------------|--------------|---------------|----------------|
| (20m x 20m) | Observed (1) | Predicted (2) | (%) (2/1)      | Observed (3) | Predicted (4) | (%) (4/3)      |
| 1           | 15           | 17            | 113            | 15.5         | 16.3          | 105            |
| 2           | 15           | 18            | 120            | 11.3         | 13.0          | 115            |
| 3           | 28           | 28            | 100            | 11.3         | 12.5          | 111            |
| 4           | 32           | 34            | 106            | 11.1         | 9.5           | 86             |
| 5           | 41           | 42            | 102            | 11.0         | 9.4           | 85             |

## ✓ Field measurement and fused image extraction on DBH and carbon storage capacity

|          | Field-derived (Mean) |         | Fused image-de | rived (Mean) |
|----------|----------------------|---------|----------------|--------------|
| Plot No. | DBH (cm)             | C (kgC) | DBH (cm)       | C (kgC)      |
| 1        | 35.2                 | 159.7   | 31.0           | 123.3        |
| 2        | 33.8                 | 147.1   | 28.9           | 107.3        |
| 3        | 31.1                 | 124.3   | 27.5           | 97.0         |
| 4        | 24.2                 | 74.5    | 24.8           | 78.5         |
| 5        | 23.5                 | 70.2    | 24.0           | 73.4         |



# **REDD+ Current status and future direction**

- Sharing experience and Plan for REDD +-



Korea Forest Service
Global Forest Resources Cooperation Division



# Carbon sequestration in Forest, Korea

- 64 percent of land area covered by forest (6.4M ha)
- forest growing stock estimated at 800M m³ (126 m³ / ha)
- 35M CO2 tons sequestrated in forests in 2009
  - 5.7% of total national emissions
- Outlook for CO<sub>2</sub> sequestration(Million tons of CO<sub>2</sub>)

| Year                                                       | 2005       | 2009        | <b>2020</b> |
|------------------------------------------------------------|------------|-------------|-------------|
|                                                            | (measured) | (estimated) | (estimated) |
| National GHGs emissions                                    | 594        | 608         | 813         |
| CO <sub>2</sub> capture by forest sector (Capture rate ,%) | 37         | 35          | 31          |
|                                                            | (6.2)      | (5.7)       | (3.8)       |

Cited from Ministry of Environment, Korea Forest Service





# REDD+ agenda from KFS

### Vision

- ✓ Contribution of mitigation/adaptation action for climate change by improving forestry C sequestration
- Expansion of REDD+ projects with combining PES and CSR activities

### Goal

✓ Securing 10M CO2 tons/year for carbon offset until 2020

# Securing suitable REDD+ project area

- Collecting a target nation for implementing projects, considering the REDD+ potential, bilateral relations, investment conditions, etc.
  - o Indonesia, Cambodia, Myanmar and Lao PDR, etc.
- ✓ Perform the REDD+ project validity check on the project target area o (2012) Sumatra in Indonesia, (2013) 3 regions in Cambodia



# Cooperation of REDD+ implementation based bilateral agreement in developing countries

### Goal

- ✓ Securing 10M CO2 tons/year for carbon offset until 2020
- Sharing information (1st stage) and securing project area (2nd stage)
  - Check the NFI system in each nations and investment environment
  - Considering REDD+ potential, bilateral relations, investment conditions, etc.
  - Support for REDD+ feasibility study to induce private sector
  - Collecting a target nation for implementing projects, considering the REDD+ potential, bilateral relations, investment conditions, etc.
    - o Indonesia, Cambodia, Myanmar and Lao PDR, etc.
  - ✓ Perform the REDD+ project validity check on the project target area o (2012) Sumatra in Indonesia, (2013) 3 regions in Cambodia



# Progress and data for REDD+ implementing



- Check the
- nation's will for implementing REDD+
- Land tenure infor.
- Distribution of C. credits bet. parties (relative law, regulation?)
- On-going REDD+ project in country/project level

- forest degradation/ deforestation data, drivers and solution
- Average C stock in various C pool, in different forest types, etc.

- implementation
- If needed, introducing private sector for project participants



# Further cooperation in each nations

#### Indonesia

- Supporting relative data for the REDD+ project
- Cooperating to successfully implement the projects through the project team

#### Cambodia

Check for candidate sites based on feasibility study from Korean research team

### Myanmar

Checking with investment environment of REDD+

#### Lao PDR

✓ Suggest candidate sites for REDD+





Potential REDD+ projects in Indonesia

 Ketapang/FFI/Kalbar Kapuas Hulu /FORCLIME/Kalbar Kapuas Hulu/FFI/Kalbar Sentarum/FFI/Kalbar Lamandau/YAYORIN-RARE/Kalteng Rimba Raya/RRC-Infinite Earth/Kalteng Katingan/RMU-Starling Resources/Kalleng Sebangau/WWF/Kalteng KFCP/AusAID-MoFo/Kalteng Heart of Borneo/WWF/Kalteng Kutai Barat/W/WF/Kaltim Kutai-Malinau/Global Green/Kaltim RHOI/BOS/Kaltim Malinau/GER/Kaltim Ivialinau/FORCLIME/Kartim Berau Forest Carbon/TNC/Kaltim

2 REDD+ pilot projects already implemented in Indonesia supported by Korea.



Eg. Ginoga, 2012

The 3rd REDD+ pilot project is newly implemented in Sumatra from 2012.

# REDD+ project: Kampar, Sumatra, Indonesia

- Project in Kampar peninsula, Sumatra island, Indonesia
- Participants: Korea Forest Service, Ministry of Forestry of Indonesia,
   Riau Provincial Government(ROD signed in Jan., 2012)
- Project area: 14,000 ha of Kampar peat land
- Project period & budget: 3 years (2012~2014), US\$3M
- Objectives: Forest survey, carbon cycle and carbon reductions study, Management planning, carbon credits trading, governance building for interested parties, education





# **Progress**

INTENSIVE CONSULTATION WITH LOCAL GOVERNMENT OF RIAU PROVINCE

25 JAN. 2012

**ROD SIGNED** 



MEETING WITH CONCESSION HOLDER, KICK-OFF MEETING IN RIAU

APR. 2013

1<sup>ST</sup>

JSC MEETING



#### FEB. 2013

INTER-GOV'TAL

WORKING

LEVEL

MEETING



5 JULI 2012

PROJECT MANAGEMENT STRUCTURE APPROVED 31 JULY 2012

WORKING LEVEL

WORKING LEVEL DISCUSSION FOR PROJECT ACTIVITIES Ti

THE MOF ASSIGNED
THE STEERING COM
MITTEE AND EXECUT

OCT - DEC

ING

AGENCY

2012



STAKEHOLDERS WORKSHOP in RIAU



# Main activities & Work plan

Preparation PDD, validation and verification for C market

Implementation
DA
for local
community
(stakeholders)

Support for FMU management

2012 Feasibility study for REDD+ project Preparation for 2013-2014 REDD+/FMU management joint project Implementation for REDD+/FMU management joint project



# Work plan based on the DD analysis



#### For Local community

- Supporting for reforestation by planting rubber trees
- Restoration peatswamp forest





#### Project area

- recovering deforested area
- implementation of forest monitoring system













# Damaged forest fire('13.6-7) – hot spot







#### Project area

- Boundary checking following NFI system
- Survey forest inventory (25,000ha, 2yrs)









# Research on Feasibility of Cambodia REDD+ Project

### **Summary**

#### **Title**

Research on Feasibility of Cambodia REDD+ Project

#### **Execution organization**

• Eco-Network (Cooperated by Korea University, Prof. Lee, Woo-Kyun)

#### **Term of Research**

• May 24, 2013 ~ November 22, 2013 (6 months contract)

#### **Purpose**

- Establishment of foundation for securing overseas REDD+ forest CERs for greenhouse gas mitigation
- Demonstration project for feasibility assessment of Cambodia REDD+ Project

#### **Contents**

- Analysis on REDD+ Methodology
- Analysis on law and regulatory
- Investigation on Candidate Site

- Composition of Project Scenario
- Making a Project Note
- Establishing Response Strategy

# **Analysis Process**



### **Candidate Site**



### **Location & Area**

**Kampong Thom** 





|    | Kampong Thom      |                      |  |  |  |
|----|-------------------|----------------------|--|--|--|
| ea | Total             | 1,244,764h<br>a      |  |  |  |
|    | Candidate<br>Site | 32,796ha             |  |  |  |
|    | Forest            | 656,057ha<br>(52.7%) |  |  |  |
|    |                   |                      |  |  |  |

Prebie





|      | Preah Vihear      |                        |  |  |
|------|-------------------|------------------------|--|--|
|      | Total             | 1,403,091ha            |  |  |
| Area | Candidate<br>Site | 52,276ha               |  |  |
|      | Forest            | 1,337,068ha<br>(95.3%) |  |  |

### **Land Cover Change**

#### **Kampong Thom**

| cover type   | 2003   | 2013   | change         | %      |
|--------------|--------|--------|----------------|--------|
| Evergreen    | 25,314 | 22,849 | 2,466 ↓        | -6.19  |
| Other forest | 9,919  | 2,790  | 7,128↓         | -17.89 |
| Non-forest   | 4,597  | 14,191 | <b>9,594</b> ↑ | +24.08 |



Date: 2003.02.07

Satellite: Landsat 7

• spatial resolution: 30m



Evergreen



Date: 2013.05.17

• Satellite: Landsat 8

• spatial resolution: 30m



Other forest



Non-forest

#### **Preah Vihear**

| cover type     | 2003   | 2012   | change   | %      |
|----------------|--------|--------|----------|--------|
| Semi-evergreen | 27,719 | 9,857  | 17,862↓  | -34.02 |
| Deciduous      | 21,019 | 31,162 | 10,143 ↑ | 19.31  |
| Wetland        | 1,798  | 5,609  | 3,811 ↑  | 7.26   |
| Non-forest     | 1,966  | 5,873  | 3,908 ↑  | 7.44   |



• Date: 2003.04.12

Satellite: Landsat 7

spatial resolution : 30m



Semi-evergreen



Wetland



• Date: 2012.11.30

• Satellite: Landsat 7

• spatial resolution: 30m



Deciduous



Non-forest

### **Ground based Carbon**



| Enumeration<br>District Symbol | Classification                      |
|--------------------------------|-------------------------------------|
| <del>-</del>                   | large tree (DBH≥50)                 |
|                                | medium tree (50>DBH≥10) / dead wood |
|                                | small tree (DBH(10)                 |
| 0                              | soil / litter layer                 |

#### **Investigation Method**

|                 | Detail                                                                                                                                                                 |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Above<br>ground | <ul> <li>Measuring dbh using diameter tape</li> <li>If it is difficult, Laser dendro-meter<br/>should be used (Criterion RD1000,<br/>Laser Technology, USA)</li> </ul> |
| Dead<br>wood    | <ul> <li>Standing and fallen tree</li> <li>'Machete test' was used for Rot ratings following IPCC NGGIP(2003)</li> </ul>                                               |
| Litter          | <ul> <li>The plot size was set using 900cm<sup>2</sup></li> <li>Litter was collected and weighted using rectangle plot.</li> </ul>                                     |
| Soil            | <ul><li>Sampling using 1 meter core</li><li>Using 10cm core in wetland sampling</li></ul>                                                                              |

# **Ground based Carbon**

### **Kampong Thom**

|                 | Plot | Sample Scale     |                  |               |  |
|-----------------|------|------------------|------------------|---------------|--|
| Class           | No.  | Tree<br>(number) | Soil<br>(number) | Litter<br>(g) |  |
| Ever            | #1   | 37               | 26               | 300           |  |
| green<br>Forest | #2   | 24               | 21               | 446           |  |
| Other<br>Forest | #1   | 13               | 14               | 167           |  |
|                 | #2   | 19               | 22               | 153           |  |
| Total           | 6    | 100              | 122              | 1,066         |  |

#### **Preah Vihear**

|           | Diet        | Sa               | Sample Scale     |               |  |  |
|-----------|-------------|------------------|------------------|---------------|--|--|
| Class     | Plot<br>No. | Tree<br>(number) | Soil<br>(number) | Litter<br>(g) |  |  |
| Semi      | #1          | 37               | 10               | 272           |  |  |
| Ever      | #2          | 28               | 16               | -             |  |  |
| green     | #3          | 12               | 19               | 119           |  |  |
|           | #1          | 10               | 13               | -             |  |  |
| Deciduous | #2          | 60               | 7                | -             |  |  |
|           | #3          | 16               |                  | 147           |  |  |
|           | #1          | -                | 10               | -             |  |  |
| Wetland   | #2          | -                | 8                | -             |  |  |
|           | #3          | 2                | 9                | -             |  |  |
| Grassland | #1          | 1                | 16               | -             |  |  |
| Total     | 10          | 166              | 108              | 538           |  |  |

### **Carbon Stocks**

greenhouse gas stocks= relevant accumulation of carbon[tC/ha] x relevant areal change[ha] x unit conversion factor

| region                    | type               | Accumulation of Carbon(tC/ha) |     |              |        |      |       | areal    | carbon stocks | greenhouse                        |
|---------------------------|--------------------|-------------------------------|-----|--------------|--------|------|-------|----------|---------------|-----------------------------------|
|                           |                    | above<br>ground               |     | dead<br>wood | litter | soil | total | cnange   | (tC)          | gas stocks<br>(tCO <sub>2</sub> ) |
| Kampong Thom<br>('03~'13) | Evergreen          | 116                           | 33  | 5            | 2      | 26   | 181   | - 2,466  | -446,265      | - 1,636,304                       |
|                           | Other forest       | 18                            | 5   | 0            | 3      | 22   | 48    | - 7,128  | -344,368      | - 1,262,683                       |
|                           | Non-Forest         | -                             |     | -            | -      | -    | -     | 9,594    |               |                                   |
| Preah Vihear<br>('03~'12) | Semi-<br>evergreen | 200                           | 56  | 1            | 1      | 49   | 308   | - 17,862 | -5,496,134    | - 20,152,493                      |
|                           | Deciduous          | 56                            | 16  | 3            | 1      | 36   | 113   | 10,143   | 1,145,661     | 4,200,757                         |
|                           | Wetland            | 0.2                           | 0.1 | 0            | 0      | 26   | 26    | 3,811    | 98,623        | 361,616                           |
|                           | Non-Forest         | -                             |     | -            | -      | -    | -     | 3,908    |               |                                   |

<sup>\*\*</sup> carbon accumulation of Kampong Thom area rate : above ground(total, 82.2%)>soil(14.1%)>dead wood(2.5%)>litter layer(1.2%)

<sup>\*\*</sup> carbon accumulation of Preah Vihear area rate : above ground(total, 83.2%)>soil (16%)>dead wood(0.5%)>litter layer(0.3%)

# **Summary of Candidate Site**

**Kampong Thom** 

# **Candidate Site**

Category

| Potential For GHG Mitigation (Under assumption that deforestation will be reduced by 100ha for 10 years) | • 36,808 tCO <sub>2</sub>                                                                                                                                              | • 398,928 tCO <sub>2</sub>                                                                                                                                       | Preah Vihear showed     higher potential reduction     than the Kampong Thom                                                                                                        |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Partnership                                                                                              | CI Japan     REDD Project is being     undertaken near candidate site                                                                                                  | <ul> <li>• WCS</li> <li>- REDD Project is being undertaken near candidate site</li> <li>※ 50% of candidate site is overlapped</li> </ul>                         | <ul> <li>Partnership of both sites are limited</li> <li>Kampong Thom</li> <li>* Site should be negotiated</li> <li>Preah Vihear</li> <li>* Boundary should be rearranged</li> </ul> |
| Governance                                                                                               | <ul> <li>Association of Forest</li> <li>Management</li> <li>Voluntary participation of the local people</li> <li>Regular joint-crackdown is being performed</li> </ul> | <ul> <li>Association of Forest</li> <li>Protection Council</li> <li>Discussion of forest</li> <li>protectio</li> </ul>                                           | <ul> <li>Association of Forest         Management by public         and private sector     </li> </ul>                                                                              |
| Cost                                                                                                     | <ul> <li>Population: 25,656 person ('08)</li> <li>Population growth: 120%('98~'08)</li> <li>Population density: 0.78person/ha</li> <li>※ Four Commune</li> </ul>       | <ul> <li>Population: 14,538 ('08)</li> <li>Population growth:33% ('98~'08)</li> <li>Population density:</li> <li>0.27person/ha</li> <li>※ Six Commune</li> </ul> | Cost of REDD+ Project is estimated to be higher in Kampong Thom  64                                                                                                                 |

**Preah Vihear** 

Remarks



# Capacity Building for REDD+

# REDD+ Capacity building program (1)

# ✓ Purpose

- Promoting REDD+ implementation ability & Enhancing bilateral relationship
- Developing REDD+ module based on Korea forest rehabilitation experience

### ✓ <u>Duration</u>

- One week, two time in every year (from 2013)

# ✓ Expected outcome

- Identify shifts in policy and strategies after participating in this training program in participating countries, leading to useful insights
- Understand global trends of climate change issues
- Contribute to establishing the development plan of climate change sectors reflecting the Korean experiences and know-how



# REDD+ Capacity building program (2) — Program details

### ✓ Course subjects (6 topics)

- Lecture 1 : Korean government forest policy and restore its forest
- Lecture 2 : Korean REDD+ policy and pilot project in developing countries
- Lecture 3 : Korean forest protection policy
- Lecture 4 : Korea FGIS
- Lecture 5 : Climate change and forest
- Lecture 6 : NGOs activities for forest recovering in developing countries

### √ Field tour

- Visiting a model forest of sustainable forest management in Korea
- National Institute of Forest science (Forest Research Institute, National Arboretum)









