

Estimation of Forest Carbon Using LiDAR-Assisted Multi-source Programme (LAMP) in Nepal

¹Basanta Raj Gautam and ²Shree Krishna Gautam ¹REDD+ and Sustainable Forestry Unit, Arbonaut Ltd. Finland ²Department of Forest Research and Survey, Nepal

arbonaut Framework: LiDAR-assisted Sampling

"Wall-to-wall" satellite data - medium to high resolution

arbonaut How the LiDAR blocks were designed?

Stratification from a Landsat based forest classification.

Weight calculated for every block as a product of the importance of the forest types and the inverse of the forest types area.

$$w_i = \frac{ew_i}{A_i/A},$$

where ew is the expert weight and A is the area

 The forest classification was used as a priori information to calculate weighting function for systematic plot assignment and random block assignment within each block.

5 km x 10 km systematic grid over Terai Arc Landscape.

Stratification

High density mixed _____ Mixed forest

Low density sal _____ Sal forest

Short grass Tall grass

Chir pine forest Degraded forest Hill sal Riverine

Shadow

After reclassification there were total 9 classes: 7 "forest" classes, "shadow" and "non-forest".

Exposed surface

Settlements Water bodies

Non-forest

arbonaut The used forest type weights

N 62'36'50'E 29'	Forest type	Area, km ²	Expert weight	Area-normalized weight
	Hill-sal	3625	100	541
	Sal	3458	200	1135
	Mixed	1299	200	3020
	Riverine	180	100	10880
	Grass	873	50	1124
	Degraded forest	1098	50	893
	Chir pine	442	100	4436
	Shadow	598	100	3283
	Non-forest	8043	0	0

Forest type map with forest type weights. The larger weights are with brighter tones in gray-scale. Black = zero weight (non-forest).

Fig: Comparison of blocks and systematic strips, and selected blocks

arbonaut Collection of field data

- Circular plots with radius of 12.62 meters.
- Tree tallying started always from the magnetic North in the clockwise order.

arbonaut Collection of field data....

- All trees and shrub above the diameter of 5 cm were measured.
- DBH (1.3 m) was measured using D-tape.
- Height was measured using Vertex.
- Height was measured for sample trees (every 5th tree), additional sample trees (not included in the sample tree of that spp), top broken trees and standing dead trees.

Materials

- Samples (5%) of LiDAR data to calibrate satellite models;
- Reference field sample plots to calibrate LiDAR models;
- Medium (e.g.Landsat) to high resolution (e.g.Rapideye) satellite imagery for wall-to-wall biomass map.

10

arbonaut Methods: Work Plo

Landsat-based forest type map for stratification

5 % of total project area for LiDAR Field plots on LiDAR area

Satellite data-based models calibrated with LiDAR estimates

Estimate all variable of interest for a grid using LiDAR treated satellite models

arbonaut Preliminary Result

Test result: AGB in 1999

AGB_tot, 1999

ton/ha			
	0 - 20		
	20 - 40		
	40 - 60		
	60 - 80		
	80 - 100		
	100 - 120		
	120 - 140		
	140 - 160		
	160 - 180		
	180 - 200		
	200 - 220		
	220 - 240		
	240 - 260		
	260 - 280		
	280 - 300		
	300 - 320		
	320 - 340		
	340 - 380		
	380 - 420		
	420 - 470		

Test result: ACB in 2010

arbonaut Test result: difference in AGB 1999 - 2010

AGB difference

N 62"36"50"E 29"44"25"

basanta.gautam@arbonaut.com shreek_gautam@yahoo.com

www.arbonaut.com

Thank you!

17.10.2013