# The Agriculture and Land Use Greenhouse Gas Inventory Software (ALU)



Designed by: Stephen M. Ogle, Ph.D. Presented by: Eleanor Milne, US EPA

Natural Resource Ecology Laboratory & Department of Ecosystem Science and Sustainability

Colorado State University











#### Why was ALU Developed?

• Agriculture and Land Use Greenhouse Gas Inventory Software (ALU) provides advanced

- to the compiler through the process of the inventory analysis for LULUCF and Agriculture sectors than spreadsheets tools
- Provide data management capabilities and facilitate institutional memory with documentation
- Provide utilities that encourage good practice!



#### **Basis for Good Practice**



- Documented
- Assessed for Uncertainties
- Subject to QA/QC
- Efficient use of resources
- Uncertainties reduced over time

#### **Source Categories in ALU**

Biomass C Stock Changes Non-CO<sub>2</sub> GHG Emissions from Burning



CH<sub>4</sub> and N<sub>2</sub>O from Manure

Soil N<sub>2</sub>O Emissions

Rice Methane

**Enteric Methane** 

Soil C Stock Changes

From 2006 IPCC Guidelines

#### Data Management in ALU

- Agriculture and LULUCF require considerable data
- Relational database structure
  - Efficient storage of data
- Relate activity data directly to calculations
- Assign emission factors automatically

#### **Advancing to Tier 2**

- Tier 1 is acceptable for reporting but default emission factors can lead to significant biases
- It is good practice to apply Tier 2 or 3 for key sources
  - Why? Provides more accurate emission estimates
- ALU facilitates application of Tier 2 methods from activity data compilation to assignment of emission factors

#### Complete Representation of Land

- It is good practice to classify the entire national land base into managed/unmanaged land and the IPCC land use categories
  - Why? Allows for a full accounting of all emissions from managed land
  - Comparability among national inventories
- ALU facilitates use of remote sensing-based products to achieve a complete representation of managed land base across the time series

#### **Documentation/Archiving**

- It is good practice to be transparent and document methods for reporting purposes
  - Why? So that other parties understand how the estimates were derived
- Also, institutional memory requires documentation and archiving
- ALU provides utilities to facilitate documentation
  - Note boxes for documentation provided in software
- ALU makes archiving easier for the compiler
  - Back-up utilities provided

#### **Consistency in Time Series**

- It is good practice to have a consistent application of methods across the inventory time series
  - Why? Because evaluating trends in emissions is a goal of an inventory so that it is possible to determine if emissions are increasing or decreasing
- ALU facilitates recalculation and consistent application of methods across a time series
  - Easily re-assign emission factors to previous years' data when factors are developed
  - Updating past activity data is possible when new information becomes available

#### **Quality Assurance/Quality Control**

- It is good practice to conduct QA/QC
  - Why? Reviewing the data as a QA/QC measure uncovers errors by the compiler
  - Also can allow input of third parties who may have knowledge of other data relevant for the inventory
- ALU provides a utility that facilitates QA/QC
  - Interface displays data which can be validated as QA/QC is completed
  - Export QA/QC data for ease of distribution for review

#### **Estimate Uncertainty**

- Inventories following good practice "contain neither over- nor under-estimates so far as can be judged, and which uncertainties are reduced as far as is practicable" (IPCC GPG 2000).
- Difficult to evaluate if uncertainty is not estimated
- ALU encourages the compilation of uncertainty data with the activity data collection and development Tier 2 emission factors

#### Reporting

- One of the main objectives of a national GHG inventory is to report emissions to the UNFCCC
- Reporting is generally done in spreadsheets
- Maps can be useful for illustrating variation in emissions across a country
- ALU provide emission reports that conform to the typical non-Annex I party reporting standards (i.e., UNFCCC software spreadsheet)
- ALU facilitates the development of emission maps to the extent that activity data and/or emission factors vary spatially





## Utilize Spatial Data





(Geographic Information System)

## Text File (Import into ALU)

1102,TRMM,HAC,FL,35117.19922 1103,TRMM,HAC,GL,65306 1104,TRMM,HAC,GL,9724.410156 1105,TRMM,HAC,OL,215.460006 1106,TRMM,HAC,SM,373.23001 1107,TRMM,HAC,CL,4032.090087 1109,TRMM,HAC,WL,7.559999 1110,TRMM,HAC,FL,0.449999 11,TRMM,HAC,WL,2316.23999 202,TMSD,HAC,FL,106793 1203,TMSD,HAC,GL,721293 1204,TMSD,HAC,GL,292541 1205,TMSD,HAC,OL,20048.59961 1206,TMSD,HAC,SM,4145.759765 1207,TMSD,HAC,CL,229119 1209,TMSD,HAC,WL,3208.050048 1210,TMSD,HAC,FL,31221.69922 1211,TMSD,HAC,WL,41818.60156 3102,TRMM,VOL,FL,51673.30078 3103,TRMM,VOL,GL,20436.19922 3104,TRMM,VOL,GL,3905.370117







## Management Data

























**②** 

Session: example

Year: 2005

Source: Biomass C Stocks

Section 1 Section

Subsource: Deforestation

Enter / View Notes

Uncertainty Calculations For: Biomass C Losses

|   | Clim         | Soil                      | LU                                | PrevLUSub                    | AgeRange    | Ldf      | 95% Uncertainty (%) |
|---|--------------|---------------------------|-----------------------------------|------------------------------|-------------|----------|---------------------|
| ľ | Tropical Wet | Low Activity Clay Mineral | Forest Land Converted to Cropland | Tropical Broadleaf Evergreen | <= 20 years | 14385937 | 59                  |
|   | Tropical Wet | Low Activity Clay Mineral | Forest Land Converted to Cropland | Tropical Broadleaf Evergreen | > 20 years  | 33567187 | 54                  |









## Scope of Analysis



- Analyze the potential change in greenhouse gas emissions from changing management of land and livestock
- Use existing inventory in ALU as the baseline
- Include multiple source categories influenced by practice
  - Within Agriculture and LULUCF
- Biophysical potentials produced by ALU, but projections can be informed by economic forecasts of commodity production and consequences for management of land and livestock

## Approaches for Mitigation Analysis



- · Whole Session Approach
  - Focus on all practices
    - Maximum utility
  - Assesses all drivers of emissions and mitigation potential
    - i.e., Population growth, economic growth and technology
- Practice-Based Approach
  - Focus on specific practice
  - Assesses technology as a driver of emissions and mitigation potential



**(** 

Analysis Name: Deforestation example

Projection Year: 2030

Mitigation Strategy: Reduced Deforestation

| lee | Default | Precision |
|-----|---------|-----------|

Specify Precision:

#### Mitigation Potential (Difference in Total Greenhouse Gas Emissions):

| Source Subsource                |               | Baseline Projection CO2<br>equivalents (Gg) | Mitigation Projection CO2<br>equivalents (Gg) | Mitigation Potential CO2<br>equivalents (Gg) |  |
|---------------------------------|---------------|---------------------------------------------|-----------------------------------------------|----------------------------------------------|--|
| Biomass C Stocks                | Deforestation | 580233                                      | 87035                                         | 493198                                       |  |
| Biomass Burning                 | Deforestation | 4122                                        | 1001                                          | 3121                                         |  |
| Total Greenhouse Gas Emissions* |               | 584355                                      | 88036                                         | 496318                                       |  |

#### Summary of Baseline Projection Emissions:

| Subsource     | Change in<br>Biomass<br>C Stocks<br>(Gg C) | CH4<br>Emissions<br>(Gg CH4)                                                                                             | CO<br>Emissions<br>(Gg CO)                                                                                                                                              | N2O<br>Emissions<br>(Gg N2O)                                                                                                                                                                                                | NOx<br>Emissions<br>(Gg NOx)                                                                                                                                                                                                                     | CO2<br>equivalents<br>(Gg)                                                                                                                                                                                                                                                                                          |
|---------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deforestation | 158245                                     | 0                                                                                                                        | 0                                                                                                                                                                       | 0                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                | 580233                                                                                                                                                                                                                                                                                                              |
| Deforestation | 0                                          | 178                                                                                                                      | 1559                                                                                                                                                                    | 1                                                                                                                                                                                                                           | 44                                                                                                                                                                                                                                               | 4122                                                                                                                                                                                                                                                                                                                |
|               | 158245                                     | 178                                                                                                                      | 1559                                                                                                                                                                    | 1                                                                                                                                                                                                                           | 44                                                                                                                                                                                                                                               | 584355                                                                                                                                                                                                                                                                                                              |
|               | Deforestation                              | Subsource         Biomass<br>C Stocks<br>(Gg C)           Deforestation         158245           Deforestation         0 | Subsource         Biomass C Stocks (Gg C)         CH4 Emissions (Gg CH4)           Deforestation         158245         0           Deforestation         0         178 | Subsource         Biomass C Stocks (Gg C)         CH4 Emissions (Gg CH4)         CO Emissions (Gg CO)           Deforestation         158245         0         0           Deforestation         0         178         1559 | Subsource         Biomass C Stocks (Gg C)         CH4 Emissions (Gg CH4)         CO Emissions (Gg N2O)           Deforestation         158245         0         0         0           Deforestation         0         178         1559         1 | Subsource         Biomass C Stocks (Gg C)         Emissions (Gg CO)         Emissions (Gg N2O)         Emissions (Gg N2O)         Emissions (Gg N2O)           Deforestation         158245         0         0         0         0           Deforestation         0         178         1559         1         44 |

#### Summary of Mitigation Projection Emissions:

| Source                          | Subsource     | Change in<br>Biomass<br>C Stocks<br>(Gg C) | CH4<br>Emissions<br>(Gg CH4) | CO<br>Emissions<br>(Gg CO) | N2O<br>Emissions<br>(Gg N2O) | NOx<br>Emissions<br>(Gg NOx) | CO2<br>equivalents<br>(Gg) |
|---------------------------------|---------------|--------------------------------------------|------------------------------|----------------------------|------------------------------|------------------------------|----------------------------|
| Biomass C Stocks                | Deforestation | 23737                                      | 0                            | 0                          | 0                            | 0                            | 87035                      |
| Biomass Burning                 | Deforestation | 0                                          | 43                           | 379                        | 0                            | 11                           | 1001                       |
| Total Greenhouse Gas Emissions* |               | 23737                                      | 43                           | 379                        | 0                            | 11                           | 88036                      |

Back

Select Another Mitigation Analysis

Write Report Return to Main Form

#### Acknowledgements:

ALU Software Programmers/Testers: Shannon Spencer (lead programmer), Melannie Hartman, Guhan Dheenadayalan, Fatmah Assiri, Bill Tucker, Prasanna Venkatesh, Mark Easter, Fadi Wedyan, Shilpa Halvadar, Hussein Al-Rousan, Dean Selby, Stephen Williams, Karen Galles and Amy Swan

#### **More Information:**

http://www.epa.gov/climatechange/emissions/ghginventorycapacitybuilding/index.html













